next up previous
Next: Systems Up: Methodologies Previous:

Including $\Delta $'s and $\Delta \rightarrow N\pi $

As we know the nucleon is not a fundamental object, it will come as no surprise to learn that it has excited states. One lowest lying excitation that couples incredibly strongly to $N\pi$is the $\Delta $, which is shorthand for $\Delta^{++}$, $\Delta^+$, $\Delta^0$and $\Delta^{-}$, an isospin quartet of particles. They have masses $\sim~1230~{\rm MeV}$ and widths $\Gamma~\sim~110~{\rm MeV}$. When we neglect electromagnetic and weak interactions these hadrons are almost identical, and can be assigned to an irreducible representation of SU(2).

To figure out how the $\Delta $'s are assigned to the totally symmetric tensor $T_{abc}$, with $a,b,c~=~1,2$ (it is easy to show that this has four independent entries, further if it had a component that was antisymmetry under interchange of two indices, then it could be contracted with $\epsilon^{ab}$), we look at the free hamiltonian for non-relativistic particles, which for nucleons is

    $\displaystyle {\cal H}_{\rm free}~=~N^{a, \dagger} \left[ -{\nabla^2\over 2 M_N}\right]
N_a
\ \ \ ,$ (27)

and for the $T_{abc}$ field is
 
    $\displaystyle {\cal H}_{\rm free}~=~T^{abc, \dagger}
\left[ -{\nabla^2\over 2 M_\Delta}\right]
T_{abc}
\ \ \ .$ (28)

Explicitly multiplying out eq. (28), and using the symmetry of $T_{abc}$ under interchange of $abc$we find
 
    $\displaystyle {\cal H}_{\rm free}~=~T^{111, \dagger}
\left[ -{\nabla^2\over 2 M...
...111}
\ +\
3\ T^{112, \dagger}
\left[ -{\nabla^2\over 2 M_\Delta}\right]
T_{112}$  
    $\displaystyle \ +\
3\ T^{122, \dagger}
\left[ -{\nabla^2\over 2 M_\Delta}\right]
T_{122}
\ +\
T^{222, \dagger}
\left[ -{\nabla^2\over 2 M_\Delta}\right]
T_{222}$  
    $\displaystyle = \Delta^{++ \dagger}\left[ -{\nabla^2\over 2 M_\Delta}\right]\De...
...{++}
\ +\
\Delta^{+ \dagger}\left[ -{\nabla^2\over 2 M_\Delta}\right]\Delta^{+}$  
    $\displaystyle \ +\
\Delta^{0 \dagger}\left[ -{\nabla^2\over 2 M_\Delta}\right]\...
...\
\Delta^{- \dagger}\left[ -{\nabla^2\over 2 M_\Delta}\right]\Delta^{-}
\ \ \ ,$ (29)

which tells us that
 
    $\displaystyle T^{111}\ = \Delta^{++}
\ ,\
T^{112}\ =\ {1\over\sqrt{3}} \Delta^{...
... ,\
T^{122}\ =\ {1\over\sqrt{3}} \Delta^{0}
\ ,\
T^{222}\ =\ \Delta^{-}
\ \ \ .$ (30)

The relation between strong decay rates $\Delta \rightarrow N\pi $ can be found be the two methods we have used previously. Let us determine the ratio of decay rates for $\Delta^{++}\rightarrow p\pi^+$and $\Delta^{+}\rightarrow n\pi^+$. Firstly, using states

    $\displaystyle \langle p\pi^+\vert\Delta^{++}\rangle~=~
\left[\langle {1\over 2},{1\over 2}\vert\langle 1,1\vert\right]\vert{3\over 2}, {3\over
2}\rangle$  
    $\displaystyle \langle {1\over 2},{1\over 2},1,1\vert{3\over 2},{3\over 2}\rangl...
...\ =\ \langle {1\over 2},{1\over 2},1,1\vert{3\over 2},{3\over 2}\rangle
\ =\ +1$  
       
    $\displaystyle \langle n\pi^+\vert\Delta^{+}\rangle~=~
\left[\langle {1\over 2},-{1\over 2}\vert\langle 1,1\vert\right]\vert{3\over 2}, {1\over
2}\rangle$  
    $\displaystyle \ =\ \left[
\langle {1\over 2},-{1\over 2},1,1\vert{3\over 2},{1\...
...langle {1\over 2}, {1\over 2}\vert
\right]
\ \vert{3\over 2}, {1\over 2}\rangle$  
    $\displaystyle \ =\ \langle {1\over 2},-{1\over 2},1,1\vert{3\over 2},{1\over 2}\rangle
\ =\ +{1\over\sqrt{3}}
\ \ \ ,$ (31)

which leads to $\Gamma(\Delta^{++}\rightarrow p\pi^+)~=~3\Gamma(
\Delta^{+}\rightarrow n\pi^+)$.

Solving the same problem using tensors we have and effective hamiltonian of the form

    $\displaystyle {\cal H}~=~\beta \epsilon^{cd} N^{a \dagger} \Pi_c^b T_{abd}$  
    $\displaystyle =~\beta\ \left[ \
p^\dagger\left( \sqrt{2\over 3}\Delta^+\pi^0
\ +\ {1\over\sqrt{3}} \Delta^0\pi^+
\ -\ \Delta^{++}\pi^-\right)
\right.$  
    $\displaystyle \left.\ +\
n^\dagger \left( \sqrt{2\over 3}\Delta^0\pi^0
\ +\ {1\...
...sqrt{3}}\Delta^-\pi^+
\ -\ {1\over\sqrt{3}}\Delta^+\pi^-
\right)\
\right]
\ \ ,$ (32)

where $\epsilon$ is the totaly antisymmetric tensor, $\epsilon^{12}~=~-\epsilon^{21}~=~+1$. It follows that
    $\displaystyle \langle p\pi^+\vert{\cal H} \vert\Delta^{++}\rangle ~=~-\beta
\ \...
...le n\pi^+\vert{\cal H} \vert\Delta^{+}\rangle ~=~-{1\over\sqrt{3}}\beta
\ \ \ ,$ (33)

and therefore $\Gamma(\Delta^{++}\rightarrow p\pi^+)~=~3\Gamma(
\Delta^{+}\rightarrow n\pi^+)$.


next up previous
Next: Systems Up: Methodologies Previous:
Martin Savage
1999-10-04