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Abstract

[ give an elementary introduction to effective field theory, followed by background
for the calculation of EM form factors of the deuteron. Some simple model
calculations illustrate the connection between the two, and then I discuss realistic
results and an extension to higher order of the calculation in Ref. [2].



1 Introduction to Effective Field Theory

Quantum Chromodynamics (QCD) is the field theory that describes nuclear physics.
It can, in principle, be solved for all the information relevant to the interactions be-
tween nucleons. However, this could only be done numerically, and the most advanced
calculations to date only deal with single nucleons. The prospects for direct computer
simulations of NN scattering are slim. Describing real nuclei with this approach would
be phenomenally difficult. In addition, calculations in terms of quarks and gluons are
vastly inefficient at low energies, where the natural degrees of freedom are nucleons.

An alternative to solving the full theory is using an effective one. Much of nuclear
physics traditionally has been formulated in terms of potential models involving several
parameters fit to data, and this largely phenomenological approach has been very
fruitful. Results typically agree with experiment to a few percent. However, this
approach is limited by the amount of QCD physics that it includes in the effective
potential. Since external currents, among other things, are difficult to include, some
observables are not as accurate as others. Also, inelastic processes are hard to model.

Effective field theories (EFT) are a different sort of low-energy approximation.
Renormalization theory says that low-energy processes are insensitive to the details
of high-energy dynamics [4]. This means that a theory containing the true long dis-
tance physics is a good representation of the true theory at low energies, regardless of
its short distance details. Recalling the inverse relationship between momentum and
wavelength, this is analogous to the fact that a probe with wavelength X is unable to
discern structure with a characteristic length much smaller than A. If, for example, the
target is some charge distribution, it can be approximated by a number of multipole
terms depending on A.

For this to make sense, we need a clear hierarchy of scales in the problem. For
nuclear physics, we have m, < m,. Thus, pion physics, such as one-pion exchange,
may be considered low-energy, while physics occurring at the scale of m,, is treated as
high-energy.

Effective field theories use chiral perturbation theory to substitute a relatively sim-
ple effective Lagrangian for the true one, which may be very complicated. This takes
the form of a series of nucleon-nucleon contact interactions, the coefficients of which
are determined from experimental data or, as may be possible in the near future,
lattice QCD calculations. Eq. (1) is an example of the S-wave piece of the series of
nucleon-nucleon contact interactions [2].

Laxer = Co(NTN) 4+ Co[(NTN)(NTD?N) + (NTN)(D*NTN)] + - (1)

It 1s Cy and C; that need to be determined.
Some regularization scheme is required to render finite the loop integrals prescribed
by this effective Lagrangian. The most intuitive method is cutoff regularization, which



essentially cuts off the integrals at some momentum scale A. This momentum scale
indicates what is being treated as high energy, and it ensures that the effective La-
grangian is not used at high energy, where it cannot be valid. This limit will manifest
itself as the breakdown scale for calculated observables, that is, where the results differ
significantly from experiment. Dimensional regularization is another popular scheme.
Loop integrals are done in D dimensions, say, and the infinities that arise in four di-
mensions are subtracted off. Then the limit of the result is taken as D approaches
four.

2 Review of Form Factors

Electron scattering is a powerful tool for probing charge distributions. Varying
the momentum transferred to the target for a fixed energy loss, a capability lacking
in photon scattering, yields a profile of the target [1]. This profile is embodied in
quantities known as “form factors.” For a point-like target, the form factor is unity, so
the form factor measures the structure of the target. The actual relation is
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where the Mott cross section refers to a point-like target [3]. For a static, spinless
target, the form factor is just the Fourier transform of the charge distribution:

Pla)= [ d* = p(x) 3)

However, because the deuteron lacks spherical symmetry (i.e., it has D-states), there
are other terms in the form factor. These correspond to higher terms in a multipole
expansion of the charge distribution. In addition, the distribution is not static, so
there is a multipole expansion of the current and, consequently, magnetic form factors.
In a relativistic treatment, these form factors are gotten from matrix elements of the
deuteron electromagnetic current to which a virtual photon couples [2].

3 Illustration with Toy Deuteron

The method of separating the long and short scales in the deuteron can be clearly
illustrated with elementary quantum mechanics. A naive model is a square well with
the depth V; that gives the correct binding energy of the deuteron (v*/M) and a
varying width Ry :

“Vy ifr <R
V(O)(T)Z{ 0 ifrs Ry (4)



By varying the width of the well by small amounts (i.e., changing the short-distance
physics), we can test whether or not low-momentum observables are sensitive to short
distance physics in an effective theory. The low-momentum observable of choice here is
the slope at ¢* = 0 of the charge form factor, given in Eq. (3). This slope is proportional
to the mean square radius, <r?>, of the charge distribution [3]. This quantity is clearly
a long-distance feature of the problem and should be relatively insensitive to the short-
distance details of the potential.

However, this happens not to be the case. Because the tail of the wave function,
Ae ™" has a coefficient that varies as the width of the square well varies, the long-
distance physics is still affected by short-distance physics. To remedy this situation,
the entire tail of the wave function must be fixed, since the tail represents the long-
distance physics. We clearly need another parameter in our potential to fix according
to the experimental value of the coefficient A. This is achieved by adding to the square
well a d-shell, that is, a potential of the form

V() = =Vi6(r — Ry) . (5)

So the full potential is V = V© 4 V() with V; and V; fit to v and A. Fig. (1) shows
that this procedure successfully separates short- and long-distance physics. The curves
are very little different, especially at low momentum. This is shown more explicitly in
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Figure 1: Fgp vs. Q (fm™") for various values of the parameter R;. For each curve,

Ro =3 fm.

Fig. (2), where the error introduced by calculating the slope of F¢ at ¢* = 0 with just



the long-distance wave function is plotted against R, for fixed Ry. The error is small,
which means that this truly is a long-distance quantity. In addition, it is relatively
constant (on a reasonable scale), except for an irrelevant bump in the middle where
the error changes sign. This supports the claim that the placement of the §-shell does
not significantly influence the long-distance physics.

0.2

0.175¢
0. 15¢
0. 125}
0.1}
0.075¢}
0.05¢
0. 025}

1 1.5 2 2.5 3

Figure 2: Relative error in slope at ¢> = 0 as a function of R, for Ry fixed at 3 fm.

4 Realistic Deuteron

The process for getting realistic deuteron wave functions and, hence, form factors is
very similar to that used in the toy calculation!. There are some details involved that
complicate the matter slightly, such as including D-states, but the basic idea is the
same. Once again, fixing the wave function tail is the most important part. This con-
centrates errors in the short-distance part, something required by EFT. There certainly
are other ways of fitting the wave function, but those spread the errors throughout the
wave function, mixing short- and long-distance physics.

For the pionless theory (i.e., the theory that treats pion physics as high energy), the
idea is to integrate the free Schrodinger equation from r = oo to r = R, for some small
radius R. R functions precisely as a momentum cutoff. In fact, using the language

!This section briefly summarizes the methods of Ref. [2].



introduced earlier, we can say R ~ 1/A. For smaller values of the radius, a short-
distance regulator (e.g., a d-shell) is used to prevent divergences at short distances.
The resulting wave function is then used to calculate matrix elements of the current
in order to find the various form factors. Fig. (3) shows the results for the quadrupole
form factor using various values of the parameter K. They are compared with the
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Nijmegen potential-model calculations, which are very reliable. The results have been
shifted at () = 0 to match the experimental value, a process that amounts to adding
a counterterm. This is necessary theoretically and substantially improves the results.
The results are very good a low momentum, and they improve as R gets smaller. This
is precisely what EFT predicts: the effective theory reproduces the true theory more
closely as more short-distance physics is included.

Fig. (4) shows the results for the tensor polarization observable Ty. These values
also include the counterterm mentioned above. Experimental data is shown with error
bars, and the EFT calculations are well within for low momentum.
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5 Future (and Current) Work

The calculation of form factors by “integrating in” has, so far, only been taken up
to order ¢ in the currents, where ¢ is the ratio of a characteristic momentum to the
nucleon mass. I am currently extending the calculation to order §%, which involves
only j(()l)(p,Q) (the next correction to j; occurs at order §°). One of the primary
motivations for this extension is that the charge radius of the neutron comes in at
this order. This quantity can be extracted from the EFT results and compared with
experiment. As the experimental value is difficult to obtain and a theoretical one
usually inaccurate, a prediction of it might be a great success of EFT, which appears

to suffer from none of the shortcomings of the other two approaches.
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