Taking a "Closer" Look at Newtonian Gravity

Forces with Sub-millimeter Dimensions

Chris Deufel

Wabash College

- Unexplainable 1% deviations from the inverse square law
- 33 orders of magnitude of untested gravitational force
- Higher Dimension Possibilities: impacts on string theory and solutions to the hierarchy problem

The Hierarchy Problem:

The Weak Force unites with the Electric Force at 10^3 GeV $\approx 10^{-18}$ centimeters, but with $1/r^2$ Gravity at 10^{18} GeV $\approx 10^{-33}$ centimeters.

A Solution:

Perhaps Gravity is not simply $1/r^2$ at the quantum level. Gravity would be much stronger, thereby uniting sooner, if it followed a $1/r^3$, $1/r^4$, or $1/r^2$ growth at small distances.

Gravity components exist in very small, compact spatial dimensions

Our Gauss's law for gravitational potential is then

 $V(r) = G_4 m_1 m_2 \times 1 + G_{4+n} m_1 m_2 \times 1$ r rn+1 $G_4 = M_{Pl(4)}^2$ is the Newtonian gravitational constant and $G_{4+n} = M_{Pl(n+4)}^{-(2+n)}$ is the coupling constant for the added gravitational component. $M_{pl(4)}^2 = M_{Pl(n+4)}^{2+n} \times Volume^n$ Extra Dimensions

Notice that gravity is essentially
$$
G_{4+n}m_1m_2 \times 1
$$
 for very large "r"
\n $G_{4+n}m_1m_2 \times 1$ for very small "r"
\n $\frac{G_{4+n}m_1m_2 \times 1}{r^{n+1}}$ for very small "r"

How Big is "n"?

Since we want to unite the electroweak force with gravity, we set $m_{ew} = M_{pl(4+n)}$ and choose "R" such that we produce M_{pl}

$$
\therefore \qquad R \approx 10^{30/n-17} \text{ cm} \times (1 \text{TeV})^{1+2/n}
$$

 m_{ew}

- $n = 1$: $R \approx 10^{13}$ cm --> solar system sized dimension and deviations
- $n = 2$: $R \approx 1$ mm --> the distance where present experimental measurement stops
- $n = 3$: R--> TeV⁻¹ distances

Testing $n = 2$ with a torsion pendulum

We need to construct a torsion pendulum that has

- • **Zero torsion-attraction to a sourcedue to** $V_{g(4)} \propto 1/r$
- • **Maximum attraction due to** $V_{g(4)} \propto 1/r^{n+1}$ or $e^{-r/\lambda} \times 1/r$

The potential due to gravity and an additional Yukawa interaction can be written

 $V(r)$ $\approx -\int dr \int dr \frac{G\rho I(rI)\rho I(r2)}{r} [1 + \alpha \exp(\frac{rI_2}{\lambda})]$ $-\int d\vec{n} \int d\vec{n} \frac{G\rho I(rI)\rho I(r2)}{r} [1+\alpha \exp(-\frac{rI}{\lambda})]$

Where G is the Newtonian gravitational constant, r12 is the distance between r1 and r2, $\rho(r1)$ and $\rho(r2)$ are mass densities, α is strength of the Yukawa force relative to gravity, and λ is the range of the Yukawa force.

Pendulum and Source Design

- •The optimized pendulum yields a 100 to 1 signal-to-noise ratio for a Yukawa force with 0.1 mm Compton wavelength--roughly 10⁵ times more sensitive than previous experiments
- •Construction began in August, and data collection will commence in late Fall or early Winter.

•Eric Adelberger and Blayne Heckel For engineering and leading this project •Nathan Collins For guiding me through theoretical quantum gravity and the modeling process

•CD Hoyle

For many, many useful comments and answers

This work is supported by the National Science Foundation's grant for an R.E. U program at the University of Washington