Electric Forces and Fields

Four equal charges are located on the corners of a square with sides of length d (in units of meters). Let $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ be unit vectors in the x- and y-directions, respectively.

Question 1 [5 points]

What is the force on the charge located at $\mathbf{r} = \frac{d}{2}\mathbf{\hat{i}} + \frac{d}{2}\mathbf{\hat{j}}$.

(a)
$$0$$

$$\begin{pmatrix} \mathbf{D} \end{pmatrix} + \frac{KQ^2}{d^2} \left(1 + \frac{1}{2\sqrt{2}} \right) \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} \right)$$

$$(c) + \frac{KQ^2}{d^2} \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} \right)$$

$$(d) - \frac{KQ^2}{d} \left(1 + \frac{1}{2\sqrt{2}} \right) \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} \right)$$

$$(e) + \frac{KQ^2}{d^2} \sqrt{\frac{5}{4}} \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} \right)$$

What is the electric field at the center of the square?

$$(a)_{(b) \infty}$$

(c)
$$+\frac{4KQ}{d^2}$$

(d) $+\frac{KQ}{d^2}\left(1+\frac{1}{2\sqrt{2}}\right)\left(\mathbf{\hat{i}}+\mathbf{\hat{j}}\right)$
(e) $+\frac{KQ}{d^2}\left(\mathbf{\hat{i}}+\mathbf{\hat{j}}\right)$

Question 3 [5 points] What is the electric field at the point $\mathbf{r} = -\frac{d}{2}\mathbf{\hat{i}}$?

(a) 0
(b)
$$-\frac{2KQ}{d^2} \hat{\mathbf{i}}$$

(C) $-\frac{2KQ}{d^2} \left(\frac{4}{5}\right)^{3/2} \hat{\mathbf{i}}$
(d) $-\frac{2KQ}{d^2} \left(\frac{8}{5}\right) \hat{\mathbf{i}}$
(e) $+\frac{2KQ}{d^2} \hat{\mathbf{j}}$

Name (Please Print)			UW ID#	Score
	(last)	(first)		

Coulombs Law

Two identical point-like conducting spheres are placed at a distance of d = 3 m from each other. One sphere is charged with q = 1 nC while the other is charged with $q = -9 \ \mu$ C.

Question 4 [5 points]

What is the approximate magnitude of the force between them?

- (a) 2×10^{-2} N
- (b) 0 N
- (c) 3×10^{-6} N

$$(d)$$
 9 × 10⁻⁶ N

(e) 9×10^{-3} N

Question 5 [5 points]

What is the direction of the force between them?

- (a) Perpendicular to the line between the centers of the sphere, attractive
- (b) Along the line between the centers of the sphere, repulsive

C) Along the line between the centers of the sphere, attractive

- (d) Force has no direction
- (e) Both (a) and (c)

The spheres are brought into contact with each other, and then returned to their original positions. Question 6 [5 points]

What is the approximate magnitude of the force between them?

(a)
$$2 \times 10^{-2}$$
 N

- (b) 0 N
- (c) 3×10^{-6} N
- (d) 9×10^{-6} N
- (e) 9×10^{-3} N

Question 7 [5 points]

What is the direction of the force between them?

(a) Perpendicular to the line between the centers of the sphere, attractive

 $\left(b\right)$ Along the line between the centers of the sphere, repulsive

- (c) Along the line between the centers of the sphere, attractive
- (d) Force has no direction
- (e) Both (a) and (c)

Midterm 1, Physics 122B, Spring 2007, Savage

Name (Please Print)			UW ID#	Score
	(last)	(first)		

Electric Dipoles

An electric dipole is formed by a charge $q_1 = -1 \ \mu C$ located at $z = -1 \ \text{mm}$ along the z-axis and a charge $q_2 = +1 \ \mu C$ located at $z = +1 \ \text{mm}$ along the z-axis, joined together by a rigid insulating rod. Question 8 [5 points]

What is the dipole moment, **p**, of this system? ($\hat{\mathbf{k}}$ is the unit vector in the +z-direction.)

- (a) $1\mu C$
- (b) $-4 \times 10^{-9} \mathbf{\hat{k}} \text{ Cm}$
- (c) $2 \times 10^{-9} (\mathbf{\hat{i}} + \mathbf{\hat{j}})$ Cm
- (d) $-2 \times 10^{-9} \mathbf{\hat{k}}$ Cm

$$\left(\mathbf{e}\right) \ 2 \times 10^{-9} \ \mathbf{\hat{k}} \ \mathrm{Cm}$$

Question 9 [5 points]

What direction is the electric field at a distance of 10 m from the dipole in the x-y plane?

- (a) radially outward from the dipole.
- (b) radially inward toward the dipole
- (c) in the +z direction

(d) in the -z direction

(e) the field vanishes

Question 10 [5 points]

A uniform electric field, $\mathbf{E} = E_0 (\hat{\mathbf{i}} + \hat{\mathbf{k}})$, is applied to the system, with $E_0 = 2 \times 10^{+3}$ N/C. What is the torque on the dipole.

(a)
$$4 \times 10^{-6}$$
 Nm
(b) -4×10^{-6} î Nm
(C) 4×10^{-6} ĵ Nm
(d) $-2\sqrt{2} \times 10^{-9}$ î Nm
(e) 0

Midterm 1, Physics 122B, Spring 2007, Savage

FIG. 1. A charged cylinder with charge per unit volume $\rho(r) = Ar^2$ for r < R.

Consider an infinitely long cylindrical charge distribution of radius R, with charge per unit volume $\rho(r) = A r^2 C/m^3$ (where A is a constant), for r < R.

A. [5 points] Draw a cylindrical Gaussian surface on fig. 1 that you can use to determine the electric field at a given distance r > R from the axis of the charge distribution.

The Gaussian surface is a finite-length cylinder of radius r co-axial with the charge distribution, and of length L.

B. [5 points] What is the charge enclosed, Q_{in} , by the Gaussian surface you have shown in (a)?

$$Q_{\rm in} = \int dV \ \rho(r) = \int_{L_0}^{L_0+L} dz \ \int_0^{2\pi} d\theta \ \int_0^R dr \ r \ Ar^2$$
$$= A \ L \ 2\pi \ \int_0^R dr \ r^3 = \frac{1}{2} A L \pi R^4$$

C. [5 points] Use Gauss's law to find the electric field at a distance r > R from the axis of the cylinder, in terms of Q_{in} .

$$\int d\mathbf{S} \cdot \mathbf{E} = \frac{1}{\epsilon_0} \int dV \ \rho(\mathbf{r})$$
$$|\mathbf{E}| 2\pi r L = \frac{1}{\epsilon_0} Q_{\rm in}$$
$$|\mathbf{E}| = \frac{Q_{\rm in}}{2\pi\epsilon_0 r L} = \frac{AR^4}{4\epsilon_0 r}$$
$$\mathbf{E} = |\mathbf{E}|\hat{\mathbf{r}}$$

D. [10 points] Find the electric field at a distance r < R from the axis of the cylinder.

The Gaussian surface is now contained within the charge distribution, and

$$Q_{\rm in} = \int dV \ \rho(r) = \int_{L_0}^{L_0 + L} dz \ \int_0^{2\pi} d\theta \ \int_0^r dr' \ r' \ Ar'^2$$
$$= A \ L \ 2\pi \ \int_0^r \ dr' \ r'^3 \ = \ \frac{1}{2} A L \pi r^4$$

which gives

$$\int d\mathbf{S} \cdot \mathbf{E} = \frac{1}{\epsilon_0} \int dV \ \rho(\mathbf{r})$$
$$|\mathbf{E}| 2\pi r L = \frac{1}{\epsilon_0} Q_{\text{in}}$$
$$|\mathbf{E}| = \frac{Q_{\text{in}}}{2\pi\epsilon_0 r L} = \frac{Ar^3}{4\epsilon_0}$$
$$\mathbf{E} = |\mathbf{E}|\hat{\mathbf{r}}$$

E. [5 points] Sketch the magnitude of the electric field $|\mathbf{E}|$ between r = 0 and r >> R. The magnitude of the electric field increase from zero at r = 0, behaving as $\propto r^3$ until it reaches the outer edge of the charge distribution, and then it falls as 1/r for r > R. The field is continuous across r = R.

Midterm 1, Physics 122B, Spring 2007, Savage