Name (Please Print)
$$
\xrightarrow{\text{(last)}} \qquad \qquad \text{UW ID\#} \qquad \text{Score} \qquad \qquad
$$

Electric Forces and Fields

Four equal charges are located on the corners of a square with sides of length d (in units of meters). Let $\hat{\mathbf{i}}$ and \hat{j} be unit vectors in the x- and y-directions, respectively.

Question 1 [5 points]

What is the force on the charge located at $\mathbf{r} = \frac{d}{2}\mathbf{\hat{i}} + \frac{d}{2}\mathbf{\hat{j}}$.

$$
(a) 0
$$

$$
\begin{pmatrix}\n\int \right) +\frac{KQ^2}{d^2} \left(1 + \frac{1}{2\sqrt{2}}\right) \left(\hat{\mathbf{i}} + \hat{\mathbf{j}}\right) \\
(c) + \frac{KQ^2}{d^2} \left(\hat{\mathbf{i}} + \hat{\mathbf{j}}\right) \\
(d) - \frac{KQ^2}{d} \left(1 + \frac{1}{2\sqrt{2}}\right) \left(\hat{\mathbf{i}} + \hat{\mathbf{j}}\right) \\
(e) + \frac{KQ^2}{d^2} \sqrt{\frac{5}{4}} \left(\hat{\mathbf{i}} + \hat{\mathbf{j}}\right)\n\end{pmatrix}
$$

What is the electric field at the center of the square?

$$
\begin{pmatrix} a \\ b \end{pmatrix} \begin{matrix} 0 \\ 0 \end{matrix}
$$

(c)
$$
+\frac{4KQ}{d^2}
$$

\n(d) $+\frac{KQ}{d^2}\left(1+\frac{1}{2\sqrt{2}}\right)\left(\hat{\mathbf{i}}+\hat{\mathbf{j}}\right)$
\n(e) $+\frac{KQ}{d^2}\left(\hat{\mathbf{i}}+\hat{\mathbf{j}}\right)$

Question 3 [5 points] What is the electric field at the point $\mathbf{r} = -\frac{d}{2}\hat{\mathbf{i}}$?

(a) 0
\n(b)
$$
-\frac{2KQ}{d^2} \hat{\mathbf{i}}
$$

\n(C) $-\frac{2KQ}{d^2} (\frac{4}{5})^{3/2} \hat{\mathbf{i}}$
\n(d) $-\frac{2KQ}{d^2} (\frac{8}{5}) \hat{\mathbf{i}}$
\n(e) $+\frac{2KQ}{d^2} \hat{\mathbf{j}}$

Coulombs Law

Two identical point-like conducting spheres are placed at a distance of $d = 3$ m from each other. One sphere is charged with $q = 1$ nC while the other is charged with $q = -9 \mu C$.

Question 4 [5 points]

What is the approximate magnitude of the force between them?

- (a) 2×10^{-2} N
- (b) 0 N
- (c) 3×10^{-6} N

$$
(d) 9 \times 10^{-6} N
$$

(e) 9×10^{-3} N

Question 5 [5 points]

What is the direction of the force between them?

- (a) Perpendicular to the line between the centers of the sphere, attractive
- (b) Along the line between the centers of the sphere, repulsive

Along the line between the centers of the sphere, attractive

- (d) Force has no direction
- (e) Both (a) and (c)

The spheres are brought into contact with each other, and then returned to their original positions. Question 6 [5 points]

What is the approximate magnitude of the force between them?

$$
\begin{array}{c}\n\text{(a) } 2 \times 10^{-2} \text{ N} \\
\text{(b) } 0 \text{ N}\n\end{array}
$$

- (c) 3×10^{-6} N
- (d) 9×10^{-6} N
- (e) 9×10^{-3} N

Question 7 [5 points]

What is the direction of the force between them?

(a) Perpendicular to the line between the centers of the sphere, attractive

 $\left(b\right)$ Along the line between the centers of the sphere, repulsive

- (c) Along the line between the centers of the sphere, attractive
- (d) Force has no direction
- (e) Both (a) and (c)

Midterm 1, Physics 122B, Spring 2007, Savage

 $\begin{tabular}{c} Name (Please Print) \end{tabular} \begin{tabular}{c} \hline \multicolumn{1}{c}{\textbf{Now ID}\#} \end{tabular} \begin{tabular}{c} \multicolumn{1}{c}{\textbf{Now ID}\#} \end{tabular} \begin{tabular}{c} Score \end{tabular}$ (last) (first)

Electric Dipoles

An electric dipole is formed by a charge $q_1 = -1$ µC located at $z = -1$ mm along the z-axis and a charge $q_2 = +1 \mu C$ located at $z = +1$ mm along the z-axis, joined together by a rigid insulating rod. Question 8 [5 points]

What is the dipole moment, **p**, of this system? ($\hat{\bf{k}}$ is the unit vector in the +z-direction.)

- (a) 1μ C
- (b) -4×10^{-9} k Cm
- (c) $2 \times 10^{-9} \left(\hat{\mathbf{i}} + \hat{\mathbf{j}} \right)$ Cm
- (d) -2×10^{-9} k Cm

$$
(e) 2 \times 10^{-9} \text{ \text \^{k} cm}
$$

Question 9 [5 points]

What direction is the electric field at a distance of 10 m from the dipole in the x-y plane?

- (a) radially outward from the dipole.
- (b) radially inward toward the dipole
- (c) in the $+z$ direction

(d) in the -z direction

(e) the field vanishes

Question 10 [5 points]

A uniform electric field, $\mathbf{E} = E_0 \left(\mathbf{\hat{i}} + \mathbf{\hat{k}} \right)$, is applied to the system, with $E_0 = 2 \times 10^{+3}$ N/C. What is the torque on the dipole.

(a) 4×10^{-6} Nm (b) -4×10^{-6} i Nm (C) 4 × 10⁻⁶ $\hat{\textbf{j}}$ Nm (d) $-2\sqrt{2} \times 10^{-9}$ î Nm (e) 0

Midterm 1, Physics 122B, Spring 2007, Savage

FIG. 1. A charged cylinder with charge per unit volume $\rho(r) = Ar^2$ for $r < R$.

Consider an infinitely long cylindrical charge distribution of radius R , with charge per unit volume $\rho(r) = A r^2 C/m^3$ (where A is a constant), for $r < R$.

A. [5 points] Draw a cylindrical Gaussian surface on fig. 1 that you can use to determine the electric field at a given distance $r > R$ from the axis of the charge distribution.

The Gaussian surface is a finite-length cylinder of radius r co-axial with the charge distribution, and of length L.

B. [5 points] What is the charge enclosed, Q_{in} , by the Gaussian surface you have shown in (a) ?

$$
Q_{\rm in} = \int dV \rho(r) = \int_{L_0}^{L_0 + L} dz \int_0^{2\pi} d\theta \int_0^R dr \ r \ Ar^2
$$

= $A L 2\pi \int_0^R dr \ r^3 = \frac{1}{2} AL\pi R^4$

C. [5 points] Use Gauss's law to find the electric field at a distance $r > R$ from the axis of the cylinder, in terms of Q_{in} .

$$
\int d\mathbf{S} \cdot \mathbf{E} = \frac{1}{\epsilon_0} \int dV \rho(\mathbf{r})
$$

$$
|\mathbf{E}| 2\pi r L = \frac{1}{\epsilon_0} Q_{\text{in}}
$$

$$
|\mathbf{E}| = \frac{Q_{\text{in}}}{2\pi \epsilon_0 r L} = \frac{AR^4}{4\epsilon_0 r}
$$

$$
\mathbf{E} = |\mathbf{E}|\hat{\mathbf{r}}
$$

D. [10 points] Find the electric field at a distance $r < R$ from the axis of the cylinder.

The Gaussian surface is now contained within the charge distribution, and

$$
Q_{\rm in} = \int dV \rho(r) = \int_{L_0}^{L_0 + L} dz \int_0^{2\pi} d\theta \int_0^r dr' r' Ar'^2
$$

= $A L 2\pi \int_0^r dr' r'^3 = \frac{1}{2} A L \pi r^4$

which gives

$$
\int d\mathbf{S} \cdot \mathbf{E} = \frac{1}{\epsilon_0} \int dV \rho(\mathbf{r})
$$

$$
|\mathbf{E}| 2\pi r L = \frac{1}{\epsilon_0} Q_{\text{in}}
$$

$$
|\mathbf{E}| = \frac{Q_{\text{in}}}{2\pi \epsilon_0 r L} = \frac{Ar^3}{4\epsilon_0}
$$

$$
\mathbf{E} = |\mathbf{E}|\hat{\mathbf{r}}
$$

E. [5 points] Sketch the magnitude of the electric field $|\mathbf{E}|$ between $r = 0$ and $r >> R$. The magnitude of the electric field increase from zero at $r = 0$, behaving as $\propto r^3$ until it reaches the outer edge of the charge distribution, and then it falls as $1/r$ for $r > R$. The field is continuous across $r = R$.

Midterm 1, Physics 122B, Spring 2007, Savage