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Part 1:

Relevance & symmetry

• Relevance

• Naturalness

• Symmetry

• Accidental symmetry
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• Irrelevant: less important in the IR

• Relevant: more important in the IR

• Marginal: scale invariant

3

Operators are classified by how they scale in the IR:

At the classical level, operators are marginal if their mass 
dimension equals the spacetime dimension.  

Lower operator dimension = more relevant.

σνe→νe ∝ G
2

F E
2
−→ 0 as E −→ 0

Example: (ψ̄ψ)2 ~ mass dimension = 6 (irrelevant)

I.  Relevance and symmetry

Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry

Summary
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• Only small effects for relevant or irrelevant operators

• A large effect on marginal operators

4

Quantum corrections change the dimensions of operators

Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry

For a generic weakly coupled theory:

Example:  QCD interaction is marginal (dimensionless coupling 
constant) at the classical level, but relevant at one-loop 
(asymptotic freedom).

Conformal field theories: 

• Scale invariant

• Marginal operators, whose engineering dimension may be far from 
the spacetime dimension if the theory is strongly coupled.

Example:   N=4 Supersymmetric Yang-Mills theory

Summary
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• Irrelevant operators are bad (nonrenormalizable!)

• Relevant operators are great (superrenormalizable!)

5

Naturalness

Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry

Old fashioned view: 

Modern view: 

• Irrelevant operators are fine (irrelevant!)

• Relevant operators are baffling 

(particles with relevant interactions 

should be too heavy to see!)

Summary



L6 =
g

Λ2
φ6

g ! δg , κ ! δκ . . .
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Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry Example:  

dimensionless 
coupling  

UV momentum cutoff 

operators renormalize each other at one loop:

δg ∼

κ

16π2

δκ ∼

g2

16π2
ln Λ

′/Λ

L8 =
κ

Λ4
φ8If you also have:  , then the two

scalar field

Couplings are “natural” if

Summary



L2 = cΛ2φ2

δc ∼

g

(4π)4
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But now consider a mass term (relevant operator):

Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry

One quantum correction:

Note that            ; can’t have               unless: mφ ! Λ mφ ≪ Λ

1. All interactions are extremely weak, or
2. Tree level value + radiative corrections 

miraculously cancel

To have light, interacting particles, relevant operators 
have to be “unnaturally” small

Summary



Lbare =
1

2
(∂φ)2 −

1

2
cΛ2φ2

− εΛφ3
− λφ4

INT David Kaplan - Schladming Winter School 2007 8

Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry Symmetry

Relevant operators can sometimes have naturally small 
coefficients due to symmetries

Example 1:

φ3

It is natural to have          because the             
    violates            symmetry, implying that 
  must be multiplicatively renormalized...   

ε ≪ 1

φ → −φ

ε

...but unnatural to have c << 1

Summary
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Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry

ψ̄ i /Dψ − mψ̄ψ

Example 2:

Dirac fermion: mass term can be naturally small, 
because it violates chiral symmetry, and is 
therefore multiplicatively renormalized.

Approximate chiral symmetry!

ψ̄ i /Dψ − mψ̄ψ − raψ̄∆ψ

Example 3:

Wilson fermion: “Irrelevant” Wilson term 
violates chiral symmetry; fermion mass must be 
fine-tuned to be << 1/a

No approximate chiral 
symmetry!

Summary



mψ̄ψ ←→ m2φ2
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Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry

Example 4: Supersymmetry 

Boson-fermion symmetry relates
fermion mass term to scalar mass term

Protected by 
chiral symmetry, 
so that fermion 
mass can be 
naturally small.

Supersymmetry requires 
boson and fermion to be 
degenerate...so scalar mass 
can be naturally small too. 
(Radiative corrections to 
scalar mass cancel)

Summary



Dimension 6 & irrelevant       baryon number 
is a good approximate symmetry in IR, even if 
not in UV (eg, SU(5) in UV)

Example 1:

Baryon number symmetry is accidental in the Standard 
Model: lowest dimension B-violating operator allowed 
by Lorentz x gauge symmetries has 3 quarks + 1 
lepton:
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Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry

Accidental symmetry

Have seen:  symmetry controls relevant operators

Converse:   allowed relevant operators determine the 
symmetries in the IR. Symmetries in the IR which are not 
symmetries in the UV = “accidental symmetries”

Summary

qqq!



Example 2:
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Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry

Lorentz symmetry emerges as an 
accidental symmetry in lattice QCD.

Lattice breaks Lorentz symmetry down to 4d cubic 
crystal group...but no relevant operator consistent 
with gauge symmetry x crystal symmetry breaks 
Lorentz symmetry...

So the IR (continuum) limit is Lorentz invariant!

E.g: A1A2A3A4

• Consistent with cubic symmetry 
•...but violates gauge symmetry

Aµ ≡ gauge field

Summary

Violates Lorentz symmetry
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Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry Summary:

Symmetry
Relevant 
operators

UV

IR

•Irrelevant operators disappear in IR

•Unprotected relevant operators are “un-natural” (eg, Higgs 
mass, cosmological constant)

•Exact or softly broken symmetries can protect relevant 
operators and make them “naturally” small or zero.

•Enhanced “accidental symmetries” can emerge in the IR if they 
can’t be broken by allowed relevant & marginal operators.

Summary
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Relevance

Symmetry

Naturalness

Accidental 
symmetry

Relevance &
symmetry

Summary
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Part II.

15

Supersymmetry

•What & Why

•N=1 SUSY Yang-Mills

• Lattice SUSY

•Accidental SUSY

• Lattice SUSY Yang-Mills



[P, P] = 0, [P,Σ] ∼ P, [Σ,Σ]
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Super-symmetry

What & Why

N=1 SUSY  
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

II. Supersymmetry

What & Why

Supersymmetry is a generalization of Poincare symmetry, which 
relates bosons and fermions

Pµ, ΣµνPoincare group generators:

Algebra:

Σ = a.s. tensorP = 4-vector

{Q, Q} = 0 [Q, Σ] ∼ Q
{

Q, Q̄
}

∼ P

Grassmann,        LH Weyl spinor

Qα, Q̄α̇Super-Poincare:

Lattice SUSY 
Yang-Mills
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Super-symmetry
Supersymmetry is interesting because:

• Supersymmetry can protect relevant operators (such 
as the Higgs mass) from large radiative corrections

• Can study many interesting features of strongly 
coupled SUSY analytically

chiral symetry breaking

confinement & magnetic monopole condensation

massless composite fermions

• Consequence of superstring theory

• Large-Nc gauge theories related to supergravity & 
string theory  

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Lattice SUSY 
Yang-Mills



σ̄m =
{

1, −"σ
}

L = λ̄ iσ̄mDm λ −
1

4
vmnv

mn
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Super-symmetry

In d=4 dimensions, minimal SUSY called “N=1”
One complex Weyl fermion supercharge Q

N=1 SUSY Yang-Mills

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Supersymmetric Yang-Mills theory (no matter):

“vector supermultiplet”: one gauge boson      (2 helicities) plus one 

Weyl fermion gaugino        (2 helicities), both adjoints of the gauge 

group

vm

λα
Lattice SUSY 

Yang-Mills



λ→ e
iα
λ
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Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Assume gauge group SU(N)

• Classical action has a U(1) symmetry acting on the gaugino:

(this symmetry does not commute with the supercharges Q, 
since vm does not transform, and so it is called an “R”-
symmetry)

• This U(1) R-symmetry is broken to a Z2N symmetry by 
anomalies:

• Theory is asymptotically free; gauginos condense, spontaneously 
breaking the Z2N R symmetry

• Condensate, string tension, domain wall tension can be 
analytically related

α = 2πn/(2N), n = (1, 2, . . . , 2N)

Lattice SUSY 
Yang-Mills



• Gauge bosons, scalars and fermions are treated so differently on 
the lattice:

(i) Gauge bosons on links

(ii) scalars on sites

(iii) fermions on sites (Wilson), or hypercube (staggered) or 
5th dimension (DWF)...

INT David Kaplan - Schladming Winter School 2007 20

Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Lattice SUSY

Can we study SUSY on the lattice? Obstacles:

{

Qα, Q̄α̇

}

= 2σ
m
αα̇
Pm

• Supersymmetry will not be preserved on the lattice

SUSY algebra:

P = generator of infinitesimal translations...not a 
symmetry of the lattice

Lattice SUSY 
Yang-Mills
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Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Poincare symmetry emerges as accidental 
symmetry...

Lattice SUSY 
Yang-Mills

Can SUSY emerge as an accidental 
symmetry in the IR?
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Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

But, the point of these lectures:  Yes, SUSY can emerge as an 
accidental symmetry of the lattice.

Accidental SUSY Yang-Mills

Accidental supersymmetry looks difficult:  scalars, fermions, gauge 
bosons are treated so differently on the lattice.

Start with a SUSY theory without scalars - N=1 SUSY Yang-Mills 
in d=4 dimensions in the continuum:

L = λ̄ iσ̄mDm λ −
1

4
vmnv

mn

What relevant interactions could be added that would spoil the 
SUSY, consistent with Lorentz & gauge symmetry?

Lattice SUSY 
Yang-Mills



δL = mλλ + h.c.
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Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

L = λ̄ iσ̄mDm λ −
1

4
vmnv

mn

The only relevant operator that can be added to this Lagrangian is 
a gaugino mass term:

The gaugino mass breaks:

• Supersymmetry

• Z2N chiral symmetry (the R-symmetry)

...so imposing a Z2N chiral symmetry on the theory forbids the 
gaugino mass, and the IR theory is accidentally supersymmetric!  
(D.K., 1984)      

Lattice SUSY 
Yang-Mills

! (my first paper!)



Majorana condition

Chiral lattice fermion

Need to construct a lattice theory with:

• SU(N) gauge symmetry

• 2-component adjoint fermion

• Z2N discrete chiral symmetry
...but not lattice supersymmetry
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Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Lattice SUSY Yang Mills:

Lattice SUSY 
Yang-Mills

D.K., M. Schmaltz (2000): used domain wall fermions to construct 
a lattice theory for supersymmetric YM theory



L R

Ψ̄ =

( )

ᾱ
T βT
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Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Lattice SUSY 
Yang-Mills

Domain wall fermion

Fermion mass

m0

-m0

α
Ψ =

( )

β̄

5d fermion Zero-mode 
components

= massle
ss 4d 

Dirac fermion

R5

“Majorana” constraint: β=Ψ = R5CΨ̄
T

α



Ψ̄ /DΨ −→ ΨT (RT5C
T /D)Ψ

det( /D) −→ Pf(RT5C
T /D)
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Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Lattice SUSY 
Yang-Mills

Ψ = R5CΨ̄
T

only possible because fermion is in a real 
representation of the gauge group (adjoint)

Pfaffian
Antisymmetric matrix

The Pfaffian is an analytic square root of the Dirac operator.
Is there a fermion sign problem?



Pf[C /D] =
√

det /D

/Dψ = λψ , /D = − /D† λ

/Dγ5ψ = −γ5ψ

/DCψ∗ = λCψ∗ , 〈ψ|Cψ∗〉 = 0
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First, consider the 4d continuum Pfaffian for
an adjoint fermion:

Look at eigenvalue equation

is imaginary

λ comes in    pairs±

λ comes in 
degenerate pairs(because C is antisymmetric)

Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Lattice SUSY 
Yang-Mills



vm

iλ
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Eigenvalues of the Dirac operator for adjoint fermion

Each spectral line has even degeneracy

√

/DTherefore can define

which is real & positive for all gauge fields

Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Lattice SUSY 
Yang-Mills



Pf[R5C /D]
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Simulations are hard! (massless dynamical domain wall 
fermions).  Early attempt: Fleming, Kogut, Vranas (2000).  

People should return to studying this system!

Can similarly show that for 5d domain wall 
fermions

is real, positive in continuum•  
 

• Lattice analogue is real, positive at finite a

Neuberger (1997), Kikkukawa

Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Lattice SUSY 
Yang-Mills
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Super-symmetry

What & Why

N=1 SUSY 
Yang-Mills

Lattice SUSY

Accidental 
SUSY  YM

Lattice SUSY 
Yang-Mills

Epilog:

Is “accidental” supersymmetry necessary? Can’t one 
just use Wilson fermions and fine-tune away the 
relevant gaugino mass?

This approach has been tried by Montvay & 
collaborators...not particularly successful.  
Definitely not a recommended approach for more 
complicated SUSY theories, with more fine-tuning.

Next:  SUSY with scalars and deconstruction

Suffers from fermion sign problem!
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Part III.

31

Accidental SUSY with scalars

•Recap

•Accidental SUSY requires exact 
SUSY!

•Why it looks impossible
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I.  Accidental SUSY with scalars

We have considered N=1 SYM theory:

" SU(N) gauge theory with one Weyl fermion      
in adjoint representation

λ

" Only relevant operator is a fermion mass:

m λλ SUSYZ2N

Violates both SUSY & discrete Z2N chiral 
symmetry

" Realize Z2N symmetry on the lattice, and 
SUSY follows “accidentally”

Accidental SUSY
with scalars

Recap

Accidental 
SUSY requires 

exact SUSY

Why it looks 
impossible
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Accidental SUSY requires Exact SUSY

More complicated supersymmetric theories 
have scalars.  A challenge for latticization!

m
2|φ|2

" Scalar mass is a relevant operator that 
violates SUSY:

SUSY

...but typically it violates no other symmetry 
(except a shift symmetry, which only applies 
to Goldstone bosons)

" Implication:  need to implement exact SUSY 
on the lattice to forbid relevant operator 
which violates SUSY ?!

Accidental SUSY
with scalars

Recap

Accidental 
SUSY requires 

exact SUSY

Why it looks 
impossible
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Analogy with Lorentz invariance & the lattice: 

⊂
Lattice symmetry 

group
SO(4) “Lorentz” 

group

Exact Accidental

??⊂Supersymmetric 
lattice group

Continuum 
supersymmetry

Exact Accidental

Lattice subgroup of supersymmetry? 

Accidental SUSY
with scalars

Recap

Accidental 
SUSY requires 

exact SUSY

Why it looks 
impossible



{

Qα, Qβ
}

= 0 ,
{

Qα, Q̄β̇

}

= 2Pmσ
m
αα̇ ,
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Supersymmetry is not a classical group; rotation 
“angles” are Grassmann. 

 “Finite supersymmetry transformations” 
analogous to “finite translations” or “finite 
rotations” do not exist.  No discrete subgroup of 
supersymmetry.

Can consider a subalgebra of the full SUSY 
algebra

But which subalgebra?  
How to avoid ruining Lorentz symmetry?

Accidental SUSY
with scalars

Recap

Accidental 
SUSY requires 

exact SUSY

Why it looks 
impossible
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Why it looks impossible
Accidental SUSY

with scalars

Recap

Accidental 
SUSY requires 

exact SUSY

Why it looks 
impossible

• Except for the special case of SUSY without 
scalars, only exact SUSY can prevent the 
appearance of SUSY violating relevant 
operators

• There is no exact SUSY subgroup we can 
impose

• No guide to how to pick a subalgebra of 
SUSY

• Exact SUSY on the lattice seems impossible 
anyway: scalars, fermions, gauge bosons are 
treated so differently
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Accidental SUSY
with scalars

Recap

Accidental 
SUSY requires 

exact SUSY

Why it looks 
impossible

For example:  N=4 SUSY on the lattice:

1 gauge field, 4 Weyl fermions, 6 real 
scalars

Exact SUSY, if it commutes with the 
gauge symmetry, implies each of these 
fields must live at same part of lattice 
(eg, site, link...)

How can scalars live on links?  They will 
transform nontrivially under rotations by 
90 degrees...won’t be scalars in the 
continuum!?
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Part IV.

38

Deconstruction

•The lesson from the 5th dimension

•The AHCG model
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A lesson from deconstruction

Arkani-Hamed, Cohen, Georgi:  “Deconstruction” 

One of their models:

• 4D,  N=1 supersymmetric gauge theory with gauge 
group SU(k)N and spontaneous symmetry breaking 
at scale 

• Continuum 4D, discrete 5th dimension, lattice 
spacing 

•                                                    :  fifth dimension 
continuous

•     5D Lorentz invariant, supersymmetric. 

•     5D theory has 8 real supercharges, twice 
the number of the 4D theory!

〈φ〉 = 1/
√
2 a

a

Deconstruction

Lesson from 
the 5th 

dimension

The AHCG 
model

N → ∞, a→ 0, g→ ∞, g2/a fixed



G = SU(k) × . . . × SU(k)
︸!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!︸

N

Φ2 = (1, k, k̄, 1, . . .)

Φ1 = (k, k̄, 1, 1, . . .)

ΦN = (k̄, 1, 1, . . . , k)

.

.

.

Φ : {φ, ψ, F}
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The AHCG model

Gauge group:

Chiral superfields:

sc
ala

r

W
ey

l fe
rm

ion

Aux
ilia

ry
 fie

ld

k
k

k

k
k

k

k

k
Φ2

ΦN Φ1

equal gau
ge 

couplings 
g

k x k matrices

SU(k) x SU(k)x...

Deconstruction

Lesson from 
the 5th 

dimension

The AHCG 
model



k

k

k

k

k

k

k

k

v(1)µ , λ
(1)

v(2)µ , λ
(2)v(N)µ , λ

(N)

φ(3), ψ(3)

φ(2), ψ(2)

φ(1), ψ(1)
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Component fields:

Gauge & gaugino fields at the sites: U(k) adjoints
Scalars & fermions on links: U(k)xU(k) bifundamentals

Deconstruction

Lesson from 
the 5th 

dimension

The AHCG 
model



and treat as lattice 5th dimension 
with lattice spacing 

x5 hopping term 
for gauge field

(µ = 1, . . . , 4)

∑

n

∣

∣

∣Dµφ
(n)
∣

∣

∣

2
=

∑

n

∣

∣

∣∂µφ
(n)
+ iv(n)µ φ

(n)
− iφ(n)v(n+1)µ

∣

∣

∣

2

Examples of terms in action:

1. Scalar kinetic term 

φ(n)(x) =
1
√

2 a
1k +

s
(n)(x) + iv

(n)

5
(x)

√

2

a→ 0
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k
k

k

k
k

k

k

k
Φ2

ΦN Φ1

Model has degenerate vacua. Expand aboutDeconstruction

Lesson from 
the 5th 

dimension

The AHCG 
model



(kept fixed as a-> 0)g2
5
≡ g2a

1

g2

∑

n

∣

∣

∣Dµφ
(n)
∣

∣

∣

2
=
1

g2

∑

n

∣

∣

∣∂µφ
(n)
+ iv(n)µ φ

(n)
− iφ(n)v(n+1)µ

∣

∣

∣

2
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Deconstruction

Lesson from 
the 5th 

dimension

The AHCG 
model

=
1

2g2

∑

n

Tr
∣

∣

∣∂µs
(n)
+ iv(n)µ s

(n)
− is(n)v(n+1)µ

+i

(

∂µv
(n)

5
+ iv(n)µ v

(n)

5
− iv

(n)

5
v(n+1)µ

)

+i

(

v(n)µ − v
(n+1)
µ

)

/a
∣

∣

∣

2

φ(n)(x) =
1
√

2 a
1k +

s
(n)(x) + iv

(n)

5
(x)

√

2
Substitute:

a→0
−−−→

1

2g2
5

∫
dx5 Tr (Dµs)

2
− Tr vµ5v

µ5
+ O(a)



1

2g2

∑

n

Tr
(

φ(n+1)φ̄(n+1) − φ̄(n)φ(n)
)

a→0
−−−→

1

2g2
5

∫
dx5Tr (D5s)

2
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AHCG action continued:

2. Scalar self-coupling “D”-term:

Deconstruction

Lesson from 
the 5th 

dimension

The AHCG 
model



1

g2

∑

n

Tr
(

λ̄(n)iσ̄µDµλ
(n)
+ ψ̄(n)iσ̄µDµψ

(n)
)

a→0
−−−→

1

g2
5

∫
dx5 Tr Ψ̄iγ

µDµΨ

Ψ =

(

λ

ψ̄

)

, Ψ̄ =
(

ψ λ̄
)

γµ =

(

σ̄µ

σµ

)

, γ5 =

(

1

−1

)
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AHCG action continued:

3. Fermion kinetic term

Deconstruction

Lesson from 
the 5th 

dimension

The AHCG 
model



1

g2

∑

n

i
√

2Tr λ(n)
(

ψ(n)φ̄(n) − φ̄(n−1)ψ(n−1)
)

+ h.c.

a→0
−−−→

1

g2
5

∫
dx5 Tr λ (iD5ψ + [ψ, s]) + h.c + O(a)

=
1

g2
5

∫
dx5 Tr Ψ̄iγ5D5Ψ − Tr Ψ̄γ5[s,Ψ]

INT David Kaplan - Schladming Winter School 2007 46

AHCG action continued:

4. Squark-quark-gaugino Yukawa coupling:

Deconstruction

Lesson from 
the 5th 

dimension

The AHCG 
model



After the          limit, one finds a 5D theory:a→ 0

vm =



































v1

v2

.

.

.

v5



































s

Real scalar s
from Re[φ]

Ψ =

(

λ

ψ̄

)

, Ψ̄ =
(

ψ λ̄
)
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• Gauge invariant
• 5D Lorentz invariant

Im[φ]
5D gauge field
v5 from 

5D Dirac field
4 components
from  λ, ψ

...and theory still respects the 4D supersymmetry.

Deconstruction

Lesson from 
the 5th 

dimension

The AHCG 
model
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What is amazing about the AHCG model

• 5D Lorentz invariant
• 4D supersymmetric = 2 complex or 4 real 

supercharges

But there is no 5D Lorentz invariant theory 

with 4 real supercharges! 

Minimum number of supercharges = 8

Deconstruction

Lesson from 
the 5th 

dimension

The AHCG 
model

In “IR” (a -> 0)  we see:
• enhanced Lorentz symmetry
• enhanced SUSY 

Magical!
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Part V.

49

From orbifolds to lattices

•A symmetry approach

•AHCG from orbifold projection

•Constructing SUSY lattices
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V. Orbifolds to lattices

Goal:  

• Find a general principle behind the AHCG model’s 
successful realization of accidental SUSY in IR

• Harness that principle to construct true SUSY 
lattices.

V2

V1

VN

k
k

k

k
k

k

k

k
Φ2

ΦN Φ1

Where did this come from?
What are its analogues for a full 

spacetime lattice?  

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices
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A symmetry approach to the AHCG model  

Consider extended supersymmetric Yang-Mills theories in 
4D:

vm λ φ

N=1

N=2

N=4

Q
# 

Rea
l S

up
er

-

ch
ar

ge
s

# 
W

ey
l g

au
gin

os

# 
ga

ug
e 
bo

so
ns

# 
co

m
pl
ex

 sc
ala

rs

4

8

16

1

1

1

1

2

4

0

1

3

Su
pe

rs
ym

m
et

ry

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices
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N=2 SUSY Yang-Mills

r
=

1r
=

0

Am

λ
(1)

λ
(2)

φ

gauge field

2 gauginos

1 complex scalar

Theory possesses an SU(2)xU(1) global “R”-symmetry

10

21/2

11

Define charge 

U(1) SU(2)

r = Y − T3

r=0 -> sites and r=1 -> links in AHCG model

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices



r = (Y − T3)

γ = ω
r



































ω

ω
2

. . .

ω
N



































ω = e2πi/Nˆ
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Orbifolds

How to get the AHCG model from an N=2 SYM 
theory through symmetry projection

1.  Start with an N=2 supersymmetric gauge 
theory with gauge group U(kN)

All fields are adjoints:  kN x kN matrices

2. Define a ZN  subgroup of U(kN)xSU(2)xU(1)
gauge R

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices



P̂ =
1

N

N∑

n=1

γ̂
n

γ̂X = ω
r
ΩXΩ

†
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Action of ZN generator on a field X in the N=2 
SUSY theory:

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices

Projection operator which annihilates anything 
transforming nontrivially under the ZN:

P̂ =”orbifold projection operator”
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3. Project out of the theory all variables that 
are charged under the ZN.  (Note different 

variables have different r charges):

• Only N  kxk blocks survive in the original 
kN x kN matrix variable X

• Which blocks survive depends on the r-
charge of X
i. r=0: diagonal blocks survive. 

Interpreted as site variables on N site 
lattice

ii.r=1: super-diagonal blocks survive. 
Interpreted as link variables on N-site 
lattice

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices

X → P̂X = ω
r
Ω(P̂X)Ω†



       variables become kxk 
site variables on 8-site, 1d 
lattice (               and              )                  X = vm X = λ1

r = 0

Example:  gauge group =U(8k)

Project out Z8

(

ω = e2πi/8
)

P̂X

= Ω(P̂X)Ω†
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†ω

ω
2

ω
3

ω
4

ω
5

ω
6

ω
7

ω
8

ω

ω
2

ω
3

ω
4

ω
5

ω
6

ω
7

ω
8

=

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices



       variables become kxk 
link variables on 8-site, 1d 
lattice

r = 1

X = φ X = λ2(               and              )                  

ω

= ω Ω(P̂X)Ω†

P̂X
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†ω

ω
2

ω
3

ω
4

ω
5

ω
6

ω
7

ω
8

ω

ω
2

ω
3

ω
4

ω
5

ω
6

ω
7

ω
8

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices
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After the projection, compute the original action 
(N=2 SYM) with the sparse matrix variables.  
One gets the AHCG model.

Symmetry of original action has been reduced:

     gauge symmetry:   U(kN)         U(k)N

     supersymmetry:  N=2 (8Q’s)        N=1 (4Q’s)

Deconstruction procedure then restores the 
broken Q’s and adds a dimension!

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices
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4d, N=2 SYM (8 real Q’s)
U(kN) gauge symmetry

AHCG model
4d N=1 SYM (4 real Q’s)
U(k)N gauge symmetry

ZN “orbifold”
projection

a→ 0, N → ∞

〈φ〉 ∝ 1/a

5d N=1 SYM (8 real Q’s)
U(k) gauge symmetry

Deconstruction 
limit

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices



0d  SYM
Q SUSYcharges
U(kNd) symmetry
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d-dimensional lattice
Q/2d SUSY charges
U(k) gauge symmetry

(ZN)d “orbifold”
projection

a→ 0, N → ∞

〈φ〉 ∝ 1/a

d-dimensional QFT
Q SUSY charges
U(k) gauge symmetry

Deconstruction 
limit

Application to SUSY latticesFrom orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices



to (x,y)=(2,2)

from (x,y)=(1,2) 

x 1   2   3   1   2   3   1   2   3   
3
  

 2
  
 1

  
 3

  
 2

  
 1

  
 3

  
 2

  
 1

  
 

y 1           2           3
3 

  
  
  
  
  
2 

  
  
  
  
  
1
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Example:  2d lattice from ZN
2 orbifold

Encoding link & site variables on a 2d lattice 
in a matrix (here, 3x3 lattice in 9x9 matrix)

Matrix-valued
link variable  

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices



γ1 = ω
r1Ω1 , γ2 = ω

r2Ω2 ,
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ZN
2 generators:

Ω1 =

.

.

.

.

.

.

.

.

.

.

.

.

ω

ω

ω
2

ω
2 Ω2 =

.

.

.

.

.

.

.

.

.

.

.

.

ω

ω

ω
2

ω
2

Generating a 2d lattice from a ZN
2 orbifold 

projection

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices
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(r1, r2) = (0, 0)

site variables

(r1, r2) = (1, 0)

x-link variables

(r1, r2) = (0, 1)

y-link variables

(r1, r2) = (1, 1)

diagonal-link variables

From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices
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From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices

(r1, r2) = (0, 0)

(r1, r2) = (1, 0)

(r1, r2) = (0, 1)

(r1, r2) = (1, 1)
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From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices

Summary:

By “sparsifying” adjoint representations of U(kNd),
into Nd k x k blocks, we can turn the internal group 
space into a physical d-dimensional Nd site lattice with 
a U(k) gauge symmetry. 
Matrix commutators turn into derivatives.

“Sparsifying” can be accomplished by projecting out a 
ZN

d symmetry of the theory (orbifolding)
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From orbifolds 
to lattices

A symmetry 
approach

AHCG from 
orbifold 

projection

Constructing 
SUSY  lattices

In a SUSY  YM theory, if the ZN
d symmetry is 

properly embedded in the gauge x R-symmetry, the 
resultant lattice will enjoy residual SUSY.

A continuum limit can be defined which at the 
classical level restores all of the original theory’s 
SUSY, as well as d-dimensional Lorentz symmetry

Tomorrow: construct the 2d lattice for (2,2) SUSY  YM (4 
supercharges in 2d), and explore the renormalization 
properties.
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Part VI.

67

A lattice for (2,2) SUSY YM

•The target theory

•Constructing the lattice

•The lattice action

•Dispersion relations

• Lattice SUSY

•Radiative corrections

•Other theories



L =
1

g2
2

Tr

(

|Dms|
2
+ iψ̄ /Dψ + 1

4
vmnvmn

+i

√
2
(

ψ̄L[s,ψR] + ψ̄R[s
†,ψL]

)

+
1

2
[s†, s]2

)
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Constructing a supersymmetric lattice

Target theory: (2,2) Super Yang-Mills in 2d

Continuum action obtained by reducing N=1 SYM 

from 4d to 2d

• 4d gauge field       2d gauge field + complex scalar

• 4d Weyl fermion       2d Dirac fermion

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



INT David Kaplan - Schladming Winter School 2007 69

Orbifold method for a 2d SUSY lattice:

(1) Start in zero dimensions with an action 
invariant under a U(kN2) gauge symmetry 
and 4 supercharges

(2) Project out a ZN x ZN symmetry

(3) Identify the “flat direction” of the theory 
(moduli space) and equate a scalar vev with 
an inverse lattice spacing

(4) Take the appropriate continuum limit

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



vmn ≡ i[vm, vn] m, n = 1, . . . , 4

L0 =
1

g2
Tr
(

1

4
vmnvmn + ψ̄σ̄m[vm,ψ]

)
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Step (1): Creating a zero dimensional “mother theory”

•Start with N=1 U(kN2) SYM in 4d

•Reduce to zero dimensions

Result (just erase all spacetime dependence in gluon/
gluino fields!) is a matrix model in zero dimensions:

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action

Still possesses all 4 supercharges



L0 =
1

g2
Tr
(

1

4
vmnvmn + ψ̄σ̄m[vm,ψ]

)

•U(kN2): 

•SO(4):      “Lorentz” transformation 

•U(1): 

•SUSY:

vm → UvmU
†, ψ→ UψU†

ψ→ e
iαψ



















R

δψ̄ = ivmn κ̄ σ̄mn

δψ = −ivmnσmnκ

δvm = −iψ̄ σ̄mκ + iκ̄ σ̄mψ

κ, κ̄         = 2 component Grassmann 

spinor parameters

δ = iκQ + iκ̄Q̄
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Step (2): Identify symmetriesA 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



γ̂1 = ω
r1Ω1 , γ̂2 = ω

r2Ω2 ,

P̂2d =
1

N2

N∑

n,m=1

γ̂
m

1
γ̂
n

2
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Step (3): Identify ZN x ZN charges for orbifold

• r1, r2 constructed from diagonal generators of the 
SO(4)xU(1) R-symmetry (rank 3).

• Maximize # of preserved supercharges = number 
of fermions with (r1,r2)=(0,0)

• Only allow values 0, +1, -1 for the r1,2 (near 
neighbor interactions only)

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



Only one supercharge survives orbifold projection

r1 r2

1

0

−1

0

0

1

0

−1

λ1

λ2

λ̄2

λ̄1

ψ =

(

λ1
λ2

)

, ψ̄ =
(

λ̄1 λ̄2
)

z1 =
1
√

2
(v0 − iv3)

z̄1 =
1
√

2
(v0 + iv3)

z̄2 =
i
√

2
(v1 + iv2)

z2 = −
i
√

2
(v1 − iv2)
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A solution: (Cohen, Kaplan, Katz, Unsal, hep-lat/0302017)

r1 r2

1

−1

0

−1 0

0

0

1

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action
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The “lattice”: 

,d

z2

,z1

z1

!

2

2

2,z

1

!

!

1!

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action
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1. Stick the sparse, projected matrices into the 
action of the mother theory:

L0 =
1

g2
Tr
(

1

4
vmnvmn + ψ̄σ̄m[vm,ψ]

)

Arrive at the action S=Sbose+Sfermi

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



S bose =
1

g2

∑

n

Tr
[

1
2
(z̄1(n − x̂)z1(n − x̂) − z1(n)z̄1(n)

+z̄2(n − ŷ)z2(n − ŷ) − z2(n)z̄2(n))
2

+2
∣

∣

∣z1(n)z2(n + x̂) − z2(n)z1(n + ŷ)
∣

∣

∣

2
]
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,d

z2

,z1

z1

!

2

2

2,z

1

!

!

1!

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



,d

z2

,z1

z1

!

2

2

2,z

1

!

!

1!

S fermi =

1

g2

∑

n

Tr
[√

2
(

λ̄1(n)z̄1(n)λ1(n) − λ̄1(n − x̂)λ1(n)z̄1(n − x̂)
)

+

√

2
(

λ̄2(n)z̄2(n)λ1(n) − λ̄2(n − ŷ)λ1(n)z̄2(n − ŷ)
)

−

√

2
(

λ̄1(n)z2(n + x̂)λ2(n) − λ̄1(n + ŷ)λ2(n)z2(n)
)

+

√

2
(

λ̄2(n)z1(n + ŷ)λ2(n) − λ̄2(n + x̂)λ2(n)z1(n)
)]
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A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



to become the 
lattice spacing
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2. Theory has a moduli space (=degenerate vacua) 
parametrized by 

〈z1(n)〉 = 〈z2(n)〉 =
1
√
2 a
1k

k x k unit matrix

,d

z2

,z1

z1

!

2

2

2,z

1

!

!

1!

Expand fields about this point

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



Pi ≡
2

a
sin

api
2

K†K =
(

P2x + P
2

y

)

(

1 0

0 1

)

=

1

g2

∑

p

(

λ̄1(p) λ̄2(p)
)

iK(p)

(

λ1(−p)

λ2(−p)

)
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〈z1(n)〉 = 〈z2(n)〉 =
1
√
2 a
1k

1

g2

∑

n

1

a
Tr
[(

λ̄1(n) − λ̄1(n − x̂)
)

λ1(n) +
(

λ̄2(n) − λ̄2(n − ŷ)
)

λ1(n)

−

(

λ̄1(n) − λ̄1(n + ŷ)
)

λ2(n) +
(

λ̄2(n) − λ̄2(n + x̂)
)

λ2(n)
]

+ O(a)

Quadratic part of the fermionic action:

Pi

∣

∣

∣

pi=±π/a
! 0 No doublers.

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action
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,d

z2

,z1

z1

!

2

2

2,z

1

!

!

1!

Have we invented a new type of fermion??

No, these are staggered fermions in disguise 
(“reduced staggered fermions”) on a lattice 
with spacing a/2

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action

λ1
λ̄1

λ̄2 λ2



INT David Kaplan - Schladming Winter School 2007 81

,d

z2

,z1

z1

!

2

2

2,z

1

!

!

1! s1, v1

s2, v2

What about the bosons?  Staggered scalars?

zi(n) =
1
√

2

(

1

a
1k + si(n) + i vi(n)

)

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action

1

2g2a2

∑

n

Tr

[

(

s1,n−x̂ − s1,n + s2,n−ŷ − s2,n
)2

+

∣

∣

∣

∣

(

s1,n+ŷ − s1,n + s2,n − s2,n+x̂
)

− i
(

v1,n+ŷ − v1,n − v2,n+x̂ + v2,n

)

∣

∣

∣

∣

2
]



→ (∂ms1)
2
+ (∂ms2)

2
→ (∂2v1 − ∂1v2)

2

=
1

2g2

∑

n

Tr



















∑

µ̂

∑

i=1,2

( si,n − si,n−µ̂

a

)2

+

(v1,n+ŷ − v1,n

a
−

v2,n+x̂ − v2,n

a

)2



















(1)
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→ (∂2s1 − ∂1s2)
2

→ (∂1s1 + ∂2s2)
2

1

2g2a2

∑

n

Tr

[

(

s1,n−x̂ − s1,n + s2,n−ŷ − s2,n
)2

+

∣

∣

∣

∣

(

s1,n+ŷ − s1,n + s2,n − s2,n+x̂
)

− i
(

v1,n+ŷ − v1,n − v2,n+x̂ + v2,n

)

∣

∣

∣

∣

2
]

Bosonic action at quadratic order
A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action
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Bosonic dispersion relations:

∑

p

s∗(p)
[

P
2
x + P

2
y

]

s(−p) Pi ≡
2

a
sin

api
2

s =
s1 + is2
√

2

Complex scalar 

Same as fermions!

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action

G(p) =

(

P2y −e−ia(px−py)PxPy
−eia(px−py)PxPy P2x

)

a→0
−−−→ (p2δi j − pip j)

Gauge bosons: 

Standard dispersion without gauge-fixing

∑

p,m,n

vm(p)G(p)mn vn(−p)



a→ 0 , N → ∞ , g/a→ g2 (fixed) , Na→ L (fixed)
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Since no doublers, continuum limit is trivial to take

...and one finds the desired target theory

L =
1

g2
2

Tr

(

|Dms|
2
+ iψ̄ /Dψ + 1

4
vmnvmn

+i

√
2
(

ψ̄L[s,ψR] + ψ̄R[s
†,ψL]

)

+
1

2
[s†, s]2

)

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action
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Is there any SUSY left on the lattice?

Yes!  One supercharge Q. 

δ = iηQ

η = Grassmann parameter

,d

z2

,z1

z1

!

2

2

2,z

1

!

!

1!δzi(n) = i
√

2 ηλi(n)

δλ1(n) = −i
[

z1(n − x̂)z1(n − x̂) − z1(n)z1(n)

+ z2(n − ŷ)z2(n − ŷ) − z2(n)z2(n) + id(n)
]

η

δλ2(n) = 2i
[

z1(n + ŷ)z2(n) − z2(n + x̂)z1(n)
]

η

δzi(n) = 0

δλi(n) = 0 (before shifting vev)

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



Analyzing theory is simplified by introducing 
superfields in terms of Grassmann coordinate   ,

with 

θ

Q = ∂/∂θ
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The lattice action may be written in manifestly 
supersymmetric form using these superfields.

Z1n = z1(n) +
√

2 θ λ1(n)

Z2n = z2(n) +
√

2 θ λ2(n)

Λn = λ1(n)

−

[

z1(n − x̂)z1(n − x̂) − z1(n)z1(n)

+ z2(n − ŷ)z2(n − ŷ) − z2(n)z2(n) + id(n))
]

θ

Ξn = ξn + 2 (z1(n + ŷ)z2(n) − z2(n + x̂)z1(n)) θ

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



•Can construct a 2d lattice action which reproduces 
the (2,2) SUSY YM action in the continuum limit at 
tree level (including the desired U(1) chiral R-
symmetry)

•The lattice action possesses one exact 
supercharge, which can be made manifest by writing 
in terms of superfields

•Fermions are realized as “reduced staggered 
fermions” :  one Dirac flavor on a 2d lattice (more 
on this later!)

•Scalars appear as link variables
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A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action

Have found so far:



Symanzik action and renormalization

(i) Construct the Symanzik action: shift the vevs of the 
bosons by                  

(ii) Expand the action for smooth superfields in powers of 
a. 

(iii) Include all operators allowed by the exact symmetries 
(SUSY, lattice reflection, discrete translation) with 
coefficients known at tree level

(iv) Consider loop corrections to coefficients

(v) Watch out for: relevant operators consistent with 
lattice symmetry, but not target theory symmetry.

(1/
√

2 a) 1k
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Is the continuum limit of this lattice 
action spoiled by renormalization??

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



dim

∫
dθ = 1

2
because

∫
dθ ∼ ∂θ ∼ Q ∼

√

P

S =
1

g2
2

∫
dθ

∫
d2x
∑
O

CO O
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Symanzik action:  (O=operator, CO = coefficient)

mass dimension:   0 = (-2) +(1/2)+(-2)+(7/2-p)+p

If O has dim = p, CO must have dimension (7/2-p)

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action



δS =
1

g2
2

∫
d2x
∑
O

δCO O

δCO = c" a
p−7/2(g22a

2)"
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Radiative corrections at l-loops

An l-loop contribution will be proportional to (g2
2)l

(i) cl is dimensionless, can only depend on a 
logarithmically

(ii) radiative correction is “bad” if O is “bad” and 
CO doesn’t vanish when a vanishes

(iii) So: potential problem only for p!(7/2-2l)

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action
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Problem if p!(7/2-2l) and O violates 
symmetries of the target theory

• l=0:  No problem, tree level theory is good 

• l=1:  Only a potential problem for p!3/2

• l"2:  never a problem (p can’t be negative)

* p = mass dimension of O

Conclusion: only a problem if we can construct a 
bad operator O with dimension p!3/2, consistent 
with the symmetries of the lattice.

One finds there is no such operator, so no 
fine tuning is necessary in this theory!

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action
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Other SUSY lattices

• For target theory with Q supercharges in d dimensions, 
lattice has Q/2d exact SUSY charges.  Want Q/2d > 0.

• Can construct lattices for pure Super Yang-Mills target 
theories with

4 supercharges in d=1,2

8 supercharges in d=1,2,3

16 supercharges in d=1,2,3,4

• Can construct lattices for SYM with 4 supercharges & 
matter fields in d=2.

92

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action
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Example: target = SYM with 16 supercharges

d=2 d=3

Site: 2 fermions, 2 real bosons
Light blue link: 2 fermions
Dark blue link: 2 real bosons, 2 fermions

Kaplan and Unsal, hep-lat/0503039

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action
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• Most probably have a fermion sign problem

• Only a limited number of theories can be 
constructed this way (eg, we cannot use these 
methods to construct a lattice for SUSY QCD with 
Nf flavors of quarks in d=4 dimensions)

• Analysis of fine-tuning problem not powerful enough 
to address renormalization of marginal operators in 
the N=4 SUSY theory in d=4 dimensions

• The orbifold technique: only good for gauge theories?

94

These lattices are pretty, but:

This technique does not seem like the last word.
  
Next lecture: return to the fermions for hints on how 
to extend these lattice constructions.

A 2d example

The target

Lattice 
construction

Dispersion 
relations

Lattice SUSY

Radiative 
corrections

Other theories

The lattice 
action
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Part VII

95

Fermions on the SUSY lattice

•Open questions

•Reduced staggered fermions

•Dirac-Kahler fermions

• “Twisted” supersymmetry
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We have learned interesting things about 
SUSY lattices:

How SUSY can be realized in terms of 
component fields on the lattice

How chiral R-symmetries can emerge in 
the continuum

How scalars can appear nontrivially on the 
lattice

How there are limitations on what sort of 
SUSY lattices can be constructed.

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions
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But we would like to know more:

What is the connection to the “Twisted 
lattice SUSY” approach by Catterall? 

Can we broaden the class of SUSY 
lattices? (E.g., fewer supercharges, more 
matter fields)

Can we use chiral fermion formulations to 
allow for fewer fermions in non-adjoint 
representations (eg, for SUSY QCD in d=4) 

Might the renormalization properties be 
better than expected?

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions
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I don’t have the answers.  

But it seems that progress might be made 
by understanding better the connection 
between lattice SUSY and staggered 
fermions.

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions



Consider staggered fermions in d=2, as 
conceived of by Susskind

ψγµ∂µψ

ψ
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Dirac action:

   is a 2-component Dirac fermion

ψ(n) = χ(n)γ
n1

1
γ
n2

2

Define: ψ(n) = γ
n2

2
γ
n1

1
χ(n)

1
2a

∑
µ ψ(n)γµ (ψ(n + µ̂) − ψ(n − µ̂))

Naive discretization:

S=

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions
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Action becomes:

Note: no more    structure left. Can make 
into a one-component fermion.

γ χ

χ(n), χ(n)

Naive action had 4 Dirac fermions in the 
continuum; this will have 2 Dirac fermions
(4x each 1-component fermion      ) χ, χ

S =

∑

n

χ̄(n)
[

(−1)n2 (χ(n + x̂) − χ(n − x̂)) + (χ(n + ŷ) − χ(n − ŷ))
]

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions
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To make the doubling explicit, go to a lattice 
twice as coarse:

Now there is no doubling, and you see all 8 
degrees of freedom explicitly

χ(n), χ(n)

χ(n + x̂ + ŷ), χ(n + x̂ + ŷ)

χ(n + x̂), χ(n + x̂)

χ(n + ŷ), χ(n + ŷ)

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions
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Next:  note that in action    on odd sites only 
interacts with    on even sites, & converse. So 
only keep odd site    and even site   .  

χ̄

χ

χ̄ χ

χ̄(n), χ̄(n + x̂ + ŷ)

χ(n + x̂), χ(n + ŷ)

Eliminate:

χ̄(n + ŷ)

χ(n) χ̄(n + x̂)

χ(n + x̂ + ŷ)Now only get one 
2-component Dirac 
fermion in the 
continuum...just 
like our SUSY 
lattice

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions
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To make identification obvious -

χ(n)→ λ1(n)

χ̄(n + ŷ)→ λ̄2(n)

χ(n + x̂ + ŷ)→ λ2(n)

χ̄(n + x̂)→ λ̄1(n)

Rename:

λ1
λ̄1

λ̄2 λ2

S =

∑

n

χ̄(n)
[

(−1)n2 (χ(n + x̂) − χ(n − x̂)) + (χ(n + ŷ) − χ(n − ŷ))
]

In terms of these variables, the Susskind action

becomes equivalent to our free fermion 
lattice action (up to unimportant overall sign)

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions
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Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions

d=2 dimensions: the Euclidian “Lorentz” group = SO(2).  

The flavor symmetry of a single Dirac fermion is also    
U(1)=SO(2). 

Somehow the reduced staggered fermion scrambles up 
this SO(2)xSO(2) symmetry, but the derivation makes it 
hard to see. 

Much clearer in the equivalent Dirac-Kahler formulation 
(Kahler 1962; Rabin 1981; Becher & Joos 1982)

The connection between staggered 
fermions and geometry
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Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions

Disclaimer: For the rest of this section, be wary of signs & numerical factors!

F = f + fµ dxµ +
1

2!
f[µν] dxµ ∧ dxν + . . .

A quick summary of p-forms, useful for 
describing totally anti-symmetric tensors in 
a geometric context:

0-form 1-form 2-form +...

All f ’s are functions of x.  Two types of differential 
operators:

d F = ∂µ f dxµ +
1

2!
∂µ fν dxµ ∧ dxν + . . .

curl: p 
-> p+1

δ F = ∂µ fµ + ∂µ f[µν]dxν + . . . div: p -
> p-1
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Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions

The Dirac equation can be formulated in terms of 
p-forms, for the right number of flavors (Kahler)

Ψαi =

[

ψ + ψµγµ +
1
2
ψ[12](γ1γ2 − γ2γ1)

]

αi

Example:  d=2,  2 flavors of Dirac fermion.  
Write as a 2x2 matrix, and then expand in the 
gamma matrix basis:

Under SO(2)L x U(2)f symmetry, the fermion 
transforms as Ψ→ ΛΨU†

#

The components                    transform as 
tensors under the diagonal subgroup  

ψ, ψµ, ψ[µν]#

SO(2) ⊂ SO(2)L × U(2) f



Furthermore, the             operations have 
natural interpretations as lattice difference 
operators.       

d and δ
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Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions

Now that the fermions are classified as tensors, 
instead of spinors, they have a natural geometric 
interpretation when latticizing them:

ψ

ψµ

ψ[µν]

0-forms            sites     

1-forms            links     

2-forms            plaquettes     



INT David Kaplan - Schladming Winter School 2007 108

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions

Latticized Dirac-Kahler fermions are equivalent to 
staggered fermions.

One can produce reduced staggered fermions 
from Dirac-Kahler for real representations (like 
adjoints)

This formulation makes it clear that staggered 
fermions have a well defined geometric 
significance, and that the point group of the lattice 
lies in a nontrivial subgroup of (Lorentz x Flavor), 
as we have seen in our SUSY lattices. 



{

Q, Qµ, Q[µν], . . .
}
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Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions

Twisted supersymmetry:

In supersymmetry, the supercharges are spinors.  
Like fermions, they do not have any natural 
geometric interpretation.

Kahler trick: Classify supercharges as 
antisymmetric tensors under Lorentz x R-
symmetry 

For a large number of supercharges, there could 
be multiple copies.

Called “twisted supersymmetry”



Now both fermions and bosons can be given 
geometric meaning and assigned roles on a lattice:
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0 index tensors           sites     

1 index tensors           links     

2 index tensors           plaquettes     

Only the 0-index supercharges (located at sites) 
are unbroken by the latticization, since only they 
interchange bosons and fermions at the same 
place on the lattice.

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions



Using “twisted SUSY” to construct SUSY lattices 
has been pioneered by Simon Catterall.  

The resulting lattices for SYM have been shown by 
Unsal to be equivalent to those produced via 
orbifolding.
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This approach naturally leads to staggered 
fermions.  Is there either a generalization or 
alternative that leads to overlap/domain wall 
fermions? Not known.

Fermions

Open 
questions

Reduced 
staggered 
fermions

“Twisted” 
SUSY

Dirac-Kahler 
fermions
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Part VIII

112

Some idle thoughts about lattice supergravity

• Staggered gravitinos?

•A lattice for vierbeins?

•Where in the world does this lattice live??
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Can we use our technology to construct 
lattice supergravity?

The wishful thinking:

Lattice gravity is very confusing!

We have machinery for creating 
supersymmetric lattices; link length is dynamical

Perhaps without thinking much we can 
construct a supersymmetric lattice with a spin 
3/2 fermion?

Supersymmetric partner will then be a graviton

Gravity without tears!?

Lattice SUGRA

Staggered 
gravitinos?

Lattice 
vierbeins?

Where in the 
world...?

Motivation
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Then:
Lattice SUGRA

Staggered 
gravitinos?

Lattice 
vierbeins?

Where in the 
world...?

Motivation
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Now:
Lattice SUGRA

Staggered 
gravitinos?

Lattice 
vierbeins?

Where in the 
world...?

Motivation
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Step 1:  Can we construct staggered 
Rarita-Schwinger (spin 3/2) fermions?

ψmα4d:

4-vector index
Dirac spinor index

Gauge freedom:

Continuum action: εmnpq ψ
T
mCγnγ5∂pψq

ψm → ψm + ∂mχ

χ = arbitrary Majorana spinor

Lattice SUGRA

Staggered 
gravitinos?

Lattice 
vierbeins?

Where in the 
world...?

Motivation



εmnpq ψ
T
mCγnγ5∂pψq

→

1

2a
εmnpq ψ

T
m(n)Cγnγ5

(

ψq(n + êp) − ψq(n − êp)
)
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Can naively discretize:

Exact fermionic gauge symmetry is preserved.

ψm(n) = γm
(

γn1
1
· · · γn4

4

)

λm(n)

Next, perform the analog of Susskind spin 
diagonalization:

Allows one to reduce number of modes to 1/4

Looks like staggered fermion, but with vector index, different 
phases.

Lattice SUGRA

Staggered 
gravitinos?

Lattice 
vierbeins?

Where in the 
world...?

Motivation



INT David Kaplan - Schladming Winter School 2007 118

With reduced staggered gravitinos, left with a minimum of 2 
gravitinos on the lattice...appropriate for N=2 SUGRA

As a first step, we considered instead 4 supercharge 
SUGRA in 2d.  Get a familiar lattice:

M. Endres, D.K.

λ
(1)
m

λ
(2)
m

λ
(2)
m

λ
(1)
m

Lattice SUGRA

Staggered 
gravitinos?

Lattice 
vierbeins?

Where in the 
world...?

Motivation



eame
a
n = gmn , eame

m
b = ηab

em,αβ̇ ≡ e
a

m
σa,αα̇ ≡

(

Em,1 Em,2

−Ēm,2 Ēm,1

)
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In SUGRA, partner of the gravitino is the vierbein 
(square root of the metric) eam

“a” is a flat space index, and knows about Lorentz SO(4); 
“m” is a curved space index and does not.  Using SO(4), 
can assign the vierbein to the lattice as well:

Em,1

Em,2

Ēm,2

Ēm,1

Lattice SUGRA

Staggered 
gravitinos?

Lattice 
vierbeins?

Where in the 
world...?

Motivation



!!"#$%&'&!()*
"

!

# $
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SUGRA also needs things like e=det(ema), e-1=em
a; those 

also have simple forms on the lattice.  For example:

The rest of the SUGRA multiplet can be similarly 
represented on the lattice.

Lattice SUGRA

Staggered 
gravitinos?

Lattice 
vierbeins?

Where in the 
world...?

Motivation
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The problem we couldn’t hide from:

Our lattice knew all about flat space indices and the local 
Lorentz group, but curved space indices had no role.

Couldn’t figure out what space the lattice represented!  
How to define covariant derivatives!

Lattice SUGRA

Staggered 
gravitinos?

Lattice 
vierbeins?

Where in the 
world...?

Motivation
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Attempts to put Supergravity on the 
lattice has both its encouraging and 
discouraging features.

Perhaps it’s stupid, or perhaps it is just 
waiting for the next good idea...

Lattice SUGRA

Staggered 
gravitinos?

Lattice 
vierbeins?

Where in the 
world...?

Motivation
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Conclusions:

• Supersymmetry is a fascinating symmetry, and for at 
least a few theories we know now how to define a 
nonperturbative lattice regulator.

• Perhaps some of these lattices will some day be 
numerically tractable; perhaps they will some day be of 
use for better understanding field theoretical 
descriptions of quantum gravity

• Is a supergravity lattice theory possible to construct? 
Maybe: currently a mix of encouraging and discouraging 
results.

• More structure here to be discovered?  It would seem 
so.

123
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Many thanks to my collaborators on lattice 
supersymmetry (in alphabetical order):

• A. Cohen
• M. Endres
• E. Katz
• M. Unsal
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