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1. Writing Σ =
√

2iφ/fπ where φ is the meson matrix

φ =


π0
√
2

+ η√
6

π+ K+

π− − π0
√
2

+ η√
6

K0

K− K̄0 −2η√
6

 (1)

then we get to quadratic order (setting QL = QR = Q)

Lem = c
α

4π
f4πTr

Q2 +

√
2i

fπ
Q[φ,Q] +

1

2

(√
2i

fπ

)2

Q[φ, [φ,Q]] + . . .

 . (2)

This term only contributes to the charged meson masses, so we can simplify the calculation by setting
all the meson fields to zero except the π± and find

Lem = −cf2π
α

2π
π+π− . (3)

Thus we get

m2
π+ −m2

π0 =
cα

2π
f2π , c =

2π

α

m2
π+ −m2

π0

f2π
= 137. (4)

This is a large value for c and one might worry that perturbation theory in α is not working (and it
is very weird that c ' 1/α to high accuracy), but this value looks OK if you use “naive dimensional
analysis” to reexpress the operator in terms of the “natural” size:

Lem =
c

(4π)2
α

4π
f2πΛ2

χTrQLΣQRΣ† , Λχ ≡ 4πfπ . (5)

With this naive dimensional analysis power counting, where operator coefficients are expected to be
O(1), the coefficient of interest is

c

16π2
= 0.867 . (6)

which is gratifyingly close to one.

2. 7 points out of 10. The ultraquarks are gauged with the following charges under SU(2)×U(1)×U(1)′:(
U
D

)
L

= 2 1
6 ,

1
6
, SL = 1− 1

3 ,−
1
3
,

(
U
D

)
R

= 2 1
6 ,−

1
6
, SR = 1− 1

3 ,
1
3
. (7)

and therefore the Σ field transforms under SU(2)× U(1)× U(1)′ as

SU(2) : δaΣ = iT aLΣ− iΣT aR , T aL = T aR =

(
σa
2 0
0 0

)
(8)

U(1) : δΣ = iYLΣ− iΣYR , YL = YR =

 1
6

1
6
− 1

3

 ≡ Y (9)

U(1)′ : δΣ = iY ′LΣ− iΣY ′R , Y ′L = −Y ′R = Y . (10)
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(a) When we replace Σ by the unit matrix 1 in the above transformations, we see that the SU(2)×U(1)
transformations of Σ vanish, while the U(1)′ transformation does not. Therefore this vacuum
preserves SU(2) × U(1) but breaks U(1)′. We expect one Goldstone boson to be eaten by the
U(1)′ gauge boson, which gets heavy. If we write Σ =

√
2iφ/Fπ with φ as in eq. (1), and work to

linear order in φ, then the U(1)′ transformation in eq. (10) is

δφ =
√

2FπY or: δη =
Fπ√

3
. (11)

The Goldstone boson that shifts under the broken symmetry is the one that can be gauged away
and therefore the η is the eaten one.

(b) The analogue of the electromagnetic contribution to the mesons for this ultracolor theory is

Lgauge = cF 4
π

[
α2

4π
TrT aΣT aΣ† +

(α1 − α′1)

4π
TrY ΣY Σ†

]
(12)

where a is summed over a = 1, 2, 3, with α2 = g22/4π, α1 = g21/4π, α′1 = (g′1)2/4π. So long as the
ultracolor group is SU(3) just like QCD, we can use the result for c from problem 1, c

16π2 = 0.867.

(c) We can use the analogue of eq. (2) to compute all the meson masses, substituting the couplings
and gauge generators shown in eq. (12), with the result that at quadratic order

Lgauge = − c

8π
F 2
π

[
(8α2)

(
π+π− +

1

2
(π0)2

)
+ (3α2 + α1 − α′1)

(
K+K− + K̄0K0

)]
(13)

so that we find

m2
π = α2

c

π
F 2
π , m2

K = (3α2 + α1 − α′1)
c

8π
F 2
π , m2

η = 0 . (14)

The vanishing of the η mass was expected since it is the Goldstone mode that gets eaten by the
Higgs mechanism; the pion is an SU(2) triplet with positive mass squared; and the kaons form
a complex SU(2) doublet (like the Higgs doublet in the SM) with a mass squared which gets
negative contributions from the U(1)′ gauge interactions. If we crank up α′1 then the kaons get
a negative mass squared, a sign that the vacuum we chose, Σ = 1 is unstable. The critical value
for this instability is

α′1 ≤ αc ≡ 3α2 + α1 , g′1c =
√

3g22 + g21 = e

√
3

sin2 θw
+

1

cos2 θw
(15)

(d) To investigate what happens at large α1 we want to look at a more general class of vacua. The
obvious one is to consider a vacuum with nonzero vev in one of the kaon (Higgs) directions.
Therefore we consider

Σ = exp

i
0 0 0

0 0 θ
0 θ 0

 =

1 0 0
0 cos θ i sin θ
0 −i sin θ cos θ

 (16)

Then

V (θ) = −Lgauge =
cF 4

π

16π

[
const.− 4α2 cos θ − (α2 + α1 − α′1) cos2 θ

]
=

cF 4
π

16π

[
const.− 4α2 cos θ + (α′1 − αc + 2α2) cos2 θ

]
=

cF 4
π

16π

[
const. + 2α2(cos θ − 1)2 + (α′1 − αc) cos2 θ

]
, (17)
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where αc is given in eq. (15). For α′1 ≤ αc we see that both terms depending on θ are minimized
for cos θ = 1, which is the SU(2)×U(1) symmetric vacuum 〈Σ〉 = 1. For α′1 > αc the O(θ2) term
in V (θ) turns negative and the symmetric vacuum becomes unstable. The minimum condition is

∂V

∂θ
= 0 = sin θ (4α2(cos θ − 1) + 2(α′1 − αc) cos θ) , (18)

with solutions

θ = 0 , θ = π , cos θ =
1

1 + ξ
≡ c0 , ξ ≡ α′1 − αc

2α2
. (19)

Since α2 > 0 one can see that V (π) > V (0) always, and so θ = π never corresponds to a minimum
of the potential. For α′1 < αc, the cos θ = c0 solution is never physical, as in that case ξ < 0 and
c0 > 1. However for α′1 > αc then ξ > 0 and this must be the true vacuum since we have seen
that the θ = 0 extremum of the potential becomes unstable (a maximum). So the solution is:

θ =

{
0 α′1 ≤ αc
θ0 ≡ cos−1

[
α2

α2+(α′
1−αc)

]
α′1 ≥ αc

(20)

(e) If we substitute our nontrivial vacuum eq. (16) into the kinetic term with the SU(2)×U(1) gauge
boson fields we get

L =
F 2
π

4
Tr
[
((ig2Wa[Ta,Σ] + ig1B[Y,Σ]) ((ig2Wa[Ta,Σ] + ig1B[Y,Σ])

†
]
≡ 1

2
AαM

2
αβAβ , (21)

with

Aα =

{
Wa α = a = 1, 2, 3

B α = 4
(22)

with

M2 =
F 2
π

4


g222(1− c0)

g222(1− c0)
g22s

2
0 −g1g2s20

−g1g2s20 g21s
2
0

 (23)

where c0 = cos θ0 and s0 = sin θ0 where θ0 is our nontrivial solution for the vacuum alignment
found above in eq. (20).

The above expression does not in general look like the SM mass matrix for the W and Z which
we saw in class unless we have

2(1− c0) = s20 =
v2

F 2
π

, v = 246 GeV . (24)

...which does hold however if θ0 = (v/Fπ)� 1. In other words, the gauge bosons look standard if
the compositeness scale Fπ is very high compared to the weak scale, which would require tuning
α′1 to be very close to the critical coupling αc = (3α2 + α1).

(f) The potential we have computed has two free parameters, Fπ and α′1. If we take α′1 → αc (where
αc in eq. (15) is known in terms of the known SM couplings g1,2), and we insist that the W,Z
masses have their conventional values, then we have fixed both of these parameters. Thus the
potential is completely determined and we should be able to compute the Higgs boson mass.

3



The Higgs boson mass is found by writing θ = (v + h)/Fπ, expanding the potential to second
order in h about its minimum:

M2
h =

∂2V

∂θ2

∣∣∣∣∣
θ→θ0

(25)

With (α′1 − αc)� 1 the angle at the minimum is given by

θ0 = cos−1
[

α2

α2 + (α′1 − αc)

]
'

√
2(α1 − αc)

α2
. (26)

Since we want to keep the W,Z masses fixed at their physical values we set

Fπ =
v

θ0
, v = 246 GeV . (27)

Thus we get

M2
h = lim

α′
1→αc

1

F 2
π

∂2V

∂θ2

∣∣∣∣∣
Fπ→vθ0,θ→θ0

= c
α2

4π
v2 = c

α

4π sin2 θw
v2 . (28)

and so our answer for the Higgs mass is

Mh = v

√
c

α

4π sin2 θw
= 145 GeV , (29)

where I used v = 246 GeV, sin2 θw = 0.23, α = 1/137., and the result for c = 137. from eq. (4).

A bit too heavy! The real Higgs mass is 125 GeV, but it is cool that we can compute it. All we
need is a factor of 3

4 in front of our expression for M2
h ...
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