
QFT III Solution #2 4/26/16

1. Wilson Loop in External Field

What we want to calculate in this problem is the geometric law obeyed by the expectation
value of the planar Wilson loop, 〈WC〉, with a transverse external random gaussian mag-
netic field 〈Bz(~r)Bx(~r ′) = σ2δ2(~r − ~r ′). Here ~r denotes a point in the plane of the contour
for WC . Addressing the note, we consider the unnormalized probability distribution for Bz,
PB = exp

[
− k

∫
d2rBz(r)

2
]
, such that

〈Bz(x)Bz(y)〉 =

∫
[dB]e−k

∫
d2rBz(r)2

Bz(x)Bz(y)∫
[dB]e−k

∫
d2rBz(r)2 , (1)

=
δ

δJ(x)

δ

δJ(y)

∫
[dB]e−

∫
d2r(kBz(r)2−J(r)Bz(r))∫

[dB]e−k
∫
d2rBz(r)2 |J=0. (2)

Completing the square and taking the functional differentiation gives,

〈Bz(x)Bz(y)〉 =
1

2k
δ2(x− y) ⇒ k =

1

2σ2
. (3)

Now, back to the main problem. Let us denote
∫

Σ as the surface integral over the region
Σ bounded by the loop contour, C, and

∮
C as the line integral around C. Calculating the

expectation value of the Wilson loop is then a matter of calculating

〈WC〉 =

∫
[dB]e−k

∫
d2rBz(r)2

eig
∮
C Aµdl

µ∫
[dB]e−k

∫
d2rBz(r)2 =

∫
[dB]e−k

∫
d2rBz(r)2

eig
∫
Σ d

2rBz(r)∫
[dB]e−k

∫
d2rBz(r)2 . (4)

In the last expression, the line integral of Aµ around the contour C was exchanged for the
surface integral of Bz. This can easily be checked using the standard expressions relating Aµ
and B. It is now useful to split the integral in the exponential arising from the probability
distribution into two area integrals

∫
d2rBz(r)

2 →
∫

Σ d
2rBz(r)

2 +
∫
x 6∈Σ d

2rBz(r)
2, which after

completing the square in the exponential gives

〈WC〉 =

∫
[dB]e−

∫
Σ d

2r(kBz(r)2−igBz(r))∫
[dB]e−k

∫
Σ d

2rBz(r)2 =

∫
[dB]e−k

∫
Σ d

2r[(Bz(r)−i g
2k

)2+ g2

4k2 ]∫
[dB]e−k

∫
Σ d

2rBz(r)2 . (5)

Performing the integration then yields, with
∫

Σ d
2r = AΣ

〈WC〉 = e−
g2

4k
AΣ . (6)

We, thus, find an area law, which indicates that we are in a confined phase!

2. Two-Flavor NJL

In this problem, we want to consider a generalization of the NJL-model considered in the
handout. Instead of a single flavor model with a U(1)A symmetry, we want to consider
a chiral two-flavor model with a U(2)L × U(2)R symmetry. The fermion condensate will
spontaneously break SU(2)L × U(2)R → SU(2)V . We will denote throughout the problem
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Φ = σ12 + iπaτa, where τa are Pauli matrices and πa, σ are real scalar fields. We will start
with the Lagrangian density

L =
N

4g
Tr Φ†Φ +

N∑
n=1

∑
i=1,2

(ψ̄L,ni∂/ψL,ni + ψ̄R,ni∂/ψR,ni) +
N∑
n=1

∑
i,j=1,2

(ψ̄L,niΦijψR,nj + h.c.). (7)

a. Symmetry and Transformations

We can read off the symmetries of the theory from noting that there is, in addition to the
chiral flavor symmetry, a U(N) symmetry rotating the fermions as in the single flavor case
ψn → Unmψn. So the total symmetry of the Lagrangian is just U(N)×SU(2)L×SU(2)R.
Φ is uncharged under the global U(N). The action of the SU(2)’s on the fermions is
given by

SU(2)L : ψL → eiθaτaψL, ψR → ψR, (8)

SU(2)R : ψR → eiθ̃aτaψR, ψL → ψL. (9)

Looking at the interaction term, we can then deduce that the scalars then must transform
as

SU(2)L : Φ→ eiθaτaΦ, (10)

SU(2)R : Φ→ Φe−iθ̃aτa . (11)

Unpacking Φ = σ12 + iπaτa and following the infinitesimal versions of the above trans-
formations

SU(2)L : δΦ = iσθaτa − θaπbτaτb ⇒ δσ = iθaτa, δπb = iθaπbτa, (12)

SU(2)R : δΦ = −iσθ̃aτa + θ̃aπbτbτa ⇒ δσ = −iθ̃aτaσ, δπb = −iθ̃aπbτa. (13)

Note in the last line, care must be taken to order the τ ’s correctly. That is, since θ̃a and
πb are just scalars δ(πbτb) = −i(πbτb)θ̃aτa = −iτb(θ̃aπbτa). Combining the action on all
of infinitesimal transformationsL

SU(2)L : δψL = iθaτaψL, δψR = 0, δσ = iσθaτa, δπb = iθaτaπb, (14)

SU(2)R : δψL = 0, δψR = iθ̃aτaψR, δσ = −iσθ̃aτa, δπb = −iθ̃aπbτa. (15)

b. Integrating Out Φ

We start with eq. 7 and derive the equations of motion for Φ. To be explicit, we
can expand Φ = σ12 + iπaτa, such the L (suppressing the summations)

L =
N

2g
(σ2 + π2

a) + ψ̄L∂/ψL + ψ̄R∂/ψR + (ψ̄L(σ12 + iπaτa)ψR + ψ̄R(σ12 − iπaτa)ψL)

Varying L with respect to σ and πb

δL
δσ

= 0, ⇒ σ = − g

N

(
ψ̄LψR + ψ̄RψL

)
= − g

N
ψ̄ψ, (16)

δL
δπb

= 0, ⇒ πb =
ig

N

(
ψ̄RτbψL − ψ̄LτbψR

)
= − ig

N
(ψ̄τbγ5ψ). (17)
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Now integrating out Φ, we perform the Gaussian path integral over σ and πa. As there is
no kinetic term for the auxiliary scalars, this is just replacing σ and πa by their equations
of motion. Substituting back in to the Lagrangian we find

Lf = ψ̄∂/ψ − g

2N

[
(ψ̄ψ)2 + (ψ̄iγ5τaψ)2

]
. (18)

c. Vacuum Structure

Exploring the non-trivial vacuum structure. From the equations of motion, we note
that rewriting the path integral

Z = N
∫
DψDψ̄e−S = N ′

∫
DψDψ̄

∫
DσD~πe−S

′
, (19)

the scalar one point functions are analogous to the U(1) NJL model:

〈σ〉 = − g

N

∑
n,i

〈ψ̄n,iψn,i〉, 〈πa〉 = − g

N

∑
n,ij

〈ψ̄n,iiγ5(τa)ijψn,j〉. (20)

Our next step in probing the vacuum structure is integrating out the fermions and
generate a fermionic functional determinant. First, we need to rewrite the Lagrangian
density in terms of fermion bilinears

L → L′ = N

2g
(σ2 + π2

a) +
∑
n,ij

ψ̄n,i(δij∂/+ δijσ + iπa(τa)ijγ5)ψn,j . (21)

Integrating out the fermions gives the bosonized Lagrangian density as

LΦ = N
( 1

2g
(σ2 + π2

a)−
∑
ij

Tr ln(δij(∂/+ σ) + iπa(τa)ijγ5)
)
. (22)

The path integral is now only over σ and πa, and with the overall N prefactor the
N → ∞ limit localizes the theory on the saddles of the action. In this limit, we want
to find the non-trivial vacuum structure corresponding to 〈σ〉 = f 6= 0 and 〈πa〉 = 0.
Finding the saddles

∂SΦ

∂σ
|〈σ〉, 〈πa〉 = N

(〈σ〉
g
−
∑
ij

Tr
δij

δij(∂/+ 〈σ〉) + i〈πa(τa)ij〉γ5

)
, (23)

= N
(f
g
− 2Tr

1

∂/+ f

)
= 0. (24)

So, we see that the saddle points are determined by an equation that looks like the U(1)
case apart from the factor of 2 coming from the sum over flavor indices. We have in
essence guaranteed that by picking the particular vacuum structure that we want to
probe. We thus end up with, structurally, the same conditions

f = 0, or
1

2g
= 4

∫
d3p

(2π)3

1

p2 + f2
≡ I (25)
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Since, we wanted to see the vacuum with f 6= 0, let us look at the integral equation
using dimensional regularization. We can use our standard techniques, letting D = 3 + ε
and taking the limit ε → 0 after integration, we find that noting the beta function is
defined in terms of Euler Gamma functions as B(a, b) = Γ(a)Γ(b)/Γ(a+ b), I evaluates
to

I =
4µ3−DfD−2

2Dπ
D
2 Γ
(
D
2

)B(
D

2
, 1− D

2
)
ε→0−−→ −f

π

(
1 +

ε

2

(
2− log

(f2eγ

µ2π

))
+O(ε2)

)
. (26)

So, renormalizing with MS, we find

f

π
= − 1

2g(1− ε+ ε log
( f
µ

)
)

ε→0−−→ − 1

2g
(27)

Is this a true minimum? We need to check

∂2SΦ

∂σ2
|〈πa〉=0, 〈σ〉=0 =

N

g
> 0. (28)

Using the above form for f
π > 0, we again see that for g < 0 the 〈σ〉 = 0 vacuum is

unstable and the 〈σ〉 = f vacuum is preferred.
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d. GS Symmetry and NGBs

To answer the question of how many NG modes we should have, we need to find the
dimension of the coset space for the preserved symmetry. For a generic spontaneous sym-
metry breaking of a symmetry group G to H ⊂ G, the number of NG modes corresponds
to the number of generators broken in the process, which corresponds to dim G/H. In
this case, since the 〈σ〉 = f , 〈πa〉 = 0 vacuum preserves SU(2)V ⊂ SU(2)L×SU(2)R, we
can perform this computation straightforwardly. We know that SU(2) has 3 generators,
and so the quotient group (SU(2)L × SU(2)R)/SU(2)V has (3 + 3)− 3 = 3 generators.
The Nambu-Goldstone modes associated with the broken generators are exactly the πa’s!
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