
QFT III Solution #1 4/12/16

1. Adjoint Rep:

a) We start with a Lie algebra g with generators labeled by Ta. By definition we have the
Lie bracket

[Ta, Tb] = ifabcTc, (1)

where fabc are the structure constants. In mathematical literature, this structure is
referred to as the adjoint endomorphism adx : g→ g acting as adx(y) = [x, y] for y ∈ g.
A useful relation to use here is the Jacobi identity

[Ta, [Tb, Tc]] + [Tc, [Ta, Tb]] + [Tb, [Tc, Ta]] = 0. (2)

Feeding in the algebra satisfied by the generators we see that eq. (2) implies

fbcdfade + fabdfcde + fcadfbde = 0. (3)

Defining the components of a matrix (ta)bc ≡ −ifabc, we see that eq. (2) can be rewritten
to be

[ta, tb] = ifabctc. (4)

Thus, the structure constants furnish for us a representation. Note that the matrices ta
are d×d dimensional, where d is the number of generators. This can be easily seen from
eq. (1).

b) Defining Φ = φaTa, we can affect the transformation δaΦ as specified in the problem
statement by

δaΦ = i[Ta,Φ] ⇒ δaΦ = −fabcTcφb. (5)

Performing the transformation on φa instead and using the definition of (ta)bc = −ifabc

δaφb = i(ta)bcφc = fabcφc. (6)

How are these two equivalent? Lets think about eq. (6) in terms of a transformation on
Φ. That is,

(δaφb)Tb = fabcφcTb ⇒ δaφbTb = −facbφcTb = δaΦ, (7)

where the last expression required use of the fact that fabc is antisymmetric.

2. Minimal GUTs: SU(5)

a) Starting at the SU(5) breaking scale, MGUT , we need to run the various couplings down
to the relevant scale, MZ , so that the weak mixing angle,

sin2 θW =
g′2

g22 + g′2
≡ x2W , (8)

can be compared to experimental values. Standard values relevant to this problem can
be found in, e.g., Quigg §7.7 or freely available in the PDG. For our purposes lets take
the value to which we compare as x2W (MZ) ≈ 0.231.
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To find the GUT prediction, we begin with the embedding of the Standard Model,
SU(3)×SU(2)×U(1)Y , in the 5 of SU(5). SU(3) inhabits the upper 3×3 block; SU(2)
sits in the lower 2×2 block; U(1)Y is the diagonal element

Y

2
= diag

(
−1

3
, −1

3
, −1

3
,

1

2
,

1

2

)
. (9)

By the statement of the problem, at the GUT scale all of the couplings are unified, and

so α5 = α3 = α2 = α1, where αi =
g2i
4π .

p N.B. The hypercharge coupling, g′ is, due to the choice of normalization of the gen-
erator Y , different from g1 by a numerical factor

1

2
g′Y = g1T24 ⇒ g′ =

√
3

5
g1.

We can see this easily by recalling that the electric charge generating the U(1)⊂SU(2)×
U(1) can be written as Q = T3 + ξT24, where T3 is an SU(2)L generator. A standard
calculation gives, ∑

Q2 = (1 + ξ2)
∑

T 2
3 ⇒ ξ2 =

3

5
,

where we used that
∑
T 2
3 = 1

2 and
∑
Q2 = 4

3 . y
Now that we have settled that, we can go about finding x2W (MZ). First note that

before any breaking of the SU(5) occurs, the unified couplings give sin2 θW (MGUT ) = 3
8 .

Next, we need the beta functions, βi for the relevant couplings. Since experimentalists
have a good precision data from which they extract the Weinberg angle, to get a pre-
diction that would be best compared to experimental values, we should go to higher
loop corrections in finding the βi’s. However, lets content ourselves with 1-loop for the
purposes of illustration. The running of the αs is generically given by

1

α3(µ2)
=

1

α3(M2)
− 1

4π

(
11− 4

3
nf

)
log

(
M2

µ2

)
≡ 1

α3(M2)
+ b3 log

(
M2

µ2

)
,(10)

1

α2(µ2)
=

1

α2(M2)
− 1

4π

(
22− 4nf

3

)
log

(
M2

µ2

)
≡ 1

α2(M2)
+ b2 log

(
M2

µ2

)
,(11)

1

αY (µ2)
=

1

αY (M2)
+

1

4π

(
20nf

9

)
log

(
M2

µ2

)
≡ 1

αY (M2)
+ bY log

(
M2

µ2

)
. (12)

where nf = 3 is the number of fermion generations, 1
αY (m2)

= 5
3α1(m2)

. Note, the

contribution of the Higgs (as well as any other possible scalar we could posit) has been
ignored but could be easily included, if desired. At this point we can easily find the
running of x2W by multiplying eq. (11) by αY as given in eq. (12). That is

αY (M2)

α2(M2)
= x2W (M2) =

3

8
− α(M2)(3bY − 5b2)

8
log

(
M2

µ2

)
. (13)

Plugging in the bi’s from above and running down to the M = MZ , we find

x2W (M2
Z) ≈ .203. (14)

This misses the mark, quoted above, for experimental comparison by about 12%. Note
however, that the minimal supersymmetry SU(5) model pushes x2W (M2

Z) ≈ .234, which
sits roughly within the error bars for the experimental result.
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b) Flipping the question around; we start with the known values of the couplings α−11 (MZ) ≈
59, α−12 (MZ) ≈ 30, and α−13 (MZ) ≈ 9. We can run eq. (10)-eq. (12) without the explicit
demand of unifying at any scale and see if it happens naturally. The plots generated
should should exactly that pairs of αi, αj unify in the range of ∼ 1013 GeV to ∼ 1017

GeV, but the three couplings never hit the same value simultaneously at any scale.

1013 1014 1015 1016 1017
GeV

20

30

40

50

60

α-1

Figure 1: Blue dashed: α1, not αY . Orange, dot-dashed: α2. Green, solid: α3.

To fix the mismatch in running the couplings from experimentally known values up
to the unification scale, we could add in contributions of other particles running in
loops to tune the βi appropriately. The Higgs alone doesn’t cut it, and we cannot add
interacting scalars at will. However, we see that if we take the minimal supersymmetric
extension of the SU(5) model, the gauginos and Higgsinos give us the correct number of
additional contributions at 1-loop to exactly unify the couplings MGUT ≈ 1016 GeV with
unified coupling α−1GUT ≈ 25. SUSY also can provide protection against higher order loop
corrections, which could potentially make the unification exact. It is assumed here that
the SUSY breaking scale is much less than the GUT scale (typically taken on the TeV
scale) and that the runnings are effected only by the minimum spectrum all the way up
to MGUT . These assumptions, while aesthetically pleasing, may be unreasonable to ask
of BSM physics.
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