1. Compute the expectation value of the Wilson loop $W_C = e^{ig \oint_C A_\mu d\ell^\mu}$ where C is a closed path lying in the x - y plane and A_μ is a U(1) gauge field, assuming that there is a gaussian random field magnetic field pointing in the z direction with $\langle B_z(\mathbf{r})B_z(\mathbf{r}')\rangle = \sigma^2 \delta^2(\mathbf{r} - \mathbf{r}')$, the vectors \mathbf{r}, \mathbf{r}' lying in the x - y plane; how does $\langle W_C \rangle$ vary as one changes C?

Note: if a variable x is described by an unnormalized probability distribution P(x), then $\langle f(x) \rangle = \int dx P(x) f(x) / \int dx P(x)$. In this case the unnormalized probability distribution for $B_z(\mathbf{r})$ is given by $\exp(-k \int d^2 r B_z(\mathbf{r})^2)$, and the integral over x is replaced by a path integral over $B_z(\mathbf{r})$. You need to figure out how to perform the required integral, and how to relate the constant k to the parameter σ .

- 2. In class (and in the posted handout) we analyzed a large-N NJL model idimensionally reduced from $4 \rightarrow 3$ dimensions to illustrate fermion condensation spontaneously breaking a $U(1)_A$ symmetry. A key ingredient was the introduction of an auxiliary field $\phi = (\sigma + i\pi)/\sqrt{2}$. Here I would like you to construct a similar model, but one exhibiting spontaneous breaking of an $SU(2)_L \times SU(2)_R$ symmetry down to $SU(2)_V$ by introducing an auxiliary field $\Phi = \sigma \mathbf{1} + i\pi_a \tau_a$, where **1** is the unit matrix, τ_a are the Pauli matrices with a = 1, 2, 3, and σ, π_a are all **real** scalar fields.
 - (a) Start with the Lagrangian

$$\mathcal{L} = \frac{N}{4g} \operatorname{Tr} \Phi^{\dagger} \Phi + \sum_{n=1}^{N} \sum_{i=1,2} \overline{\psi}_{ni} \partial \!\!\!/ \psi_{ni} + \sum_{n=1}^{N} \sum_{ij=1,2} \left(\overline{\psi}_{L,ni} \Phi_{ij} \ \psi_{R,nj} + \text{h.c.} \right) , \qquad (1)$$

where ψ is a four-component Dirac fermion, $\psi_R = \frac{1+\gamma_5}{2}\psi$, $\psi_L = \frac{1-\gamma_5}{2}\psi$, and the γ -matrices are the usual 4×4 matrices we use in four dimensions. What makes the theory 3-dimensional is that we assume ψ and Φ are independent of one spatial coordinate, and so momentum integrals are over $\int d^3p$ rather than $\int d^4p$. What is the full symmetry of this theory? Show explicitly how the ψ_L , ψ_R , σ and π_a fields transform under infinitesimal symmetry transformations.

- (b) What is the fermion Lagrangian if you integrate out the Φ field?
- (c) Show that in the large N limit there can be a nontrivial vacuum with $\langle \sigma \rangle = f \neq 0$ and $\langle \pi_a \rangle = 0$, using dim reg and \overline{MS} to deal with divergences and renormalization, and determining the condition on g for this ground state to be favored. Sketch f versus g.
- (d) What is the symmetry of this ground state? How many Goldstone bosons should there be? How do they transform under the unbroken symmetry?