- 1. The adjoint representation:
 - (a) Show that for a Lie algebra $[T_a, T_b] = if_{abc}T_c$ with $\operatorname{Tr} T_aT_b = k\delta_{ab}$, then $[t_a, t_b] = if_{abc}t_c$ serves as a *d*-dimensional representation of the algebra, where *d* is the number of generators and the t_a are matrices defined as $(t_a)_{bc} = -if_{abc}$. Hint: consider the Jacobi identity.
 - (b) Show that if I define $\Phi = \phi_a T_a$ then the two transformations $\delta_a \Phi = i [T_a, \Phi]$ and $\delta_a \phi_b = i (t_a)_{bc} \phi_c$ are equivalent.
- 2. (a) Starting from an SU(5) GUT with three families of quarks and leptons broken to the SM at a scale $\mu = M_{\text{GUT}}$, with α_5 equal to the unified fine structure constant at that scale, use the 1-loop β functions to scale the couplings $\alpha_{1,2,3}$ down to $\mu = M_Z$ (you can leave the top quark contribution in the β functions all the way down to M_Z). By using the experimentally determined values for $\alpha_s(M_Z)$ and $\alpha(M_Z)$, predict $\sin^2 \theta_w$. How does your prediction compare with the experimental value? What do you find for α_5 and M_{GUT} ?
 - (b) Reverse the calculation: start with the experimental values for $\alpha_s(M_Z)$, $\alpha(M_Z)$ and $\sin^2 \theta_w$ and plot c/α_1 , $1/\alpha_2$, and $1/\alpha_3$ versus $\ln \mu/M_Z$, where c is the appropriate numerical factor indicated by SU(5), arising from T_{24} and Y having different normalizations. What does your plot look like in the vicinity of μ equal to the value of $M_{\rm GUT}$ you found above? Can you think of how the assumptions could be changed to make the couplings all meet? (I only expect a qualitative answer for this last question)