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Anomalies

2.1 The U(1)
A

anomaly in 1+1 dimensions

One of the fascinating features of chiral symmetry is that sometimes it is not a sym-
metry of the quantum field theory even when it is a symmetry of the Lagrangian. In
particular, Noether’s theorem can be modified in a theory with an infinite number of
degrees of freedom; the modification is called “an anomaly”. Anomalies turn out to
be very relevant both for phenomenology, and for the implementation of lattice field
theory. The reason anomalies a↵ect chiral symmetries is that regularization requires a
cut-o↵ on the infinite number of modes above some mass scale, while chiral symmetry
is incompatible with fermion masses1.

Anomalies can be seen in many di↵erent ways. I think the most physical is to
look at what happens to the ground state of a theory with a single flavor of massless
Dirac fermion in (1 + 1) dimensions in the presence of an electric field. Suppose one
adiabatically turns on a constant positive electric field E(t), then later turns it o↵; the
equation of motion for the fermion is 2 dp

dt

= eE(t) and the total change in momentum
is

�p = e

Z
E(t) dt . (2.1)

Thus the momenta of both left- and right-moving modes increase; if one starts in the
ground state of the theory with filled Dirac sea, after the electric field has turned o↵,
both the right-moving and left-moving sea has shifted to the right as in Fig. 2.1. The
the final state di↵ers from the original by the creation of particle- antiparticle pairs:
right moving particles and left moving antiparticles. Thus while there is a fermion
current in the final state, fermion number has not changed. This is what one would
expect from conservation of the U(1) current:

@
µ

Jµ = 0 , (2.2)

However, recall that right-moving and left-moving particles have positive and negative
chirality respectively; therefore the final state in Fig. 2.1 has net axial charge, even
though the initial state did not. This is peculiar, since the coupling of the electromag-
netic field in the Lagrangian does not violate chirality. We can quantify the e↵ect: if

1Dimensional regularization is not a loophole, since chiral symmetry cannot be analytically con-
tinued away from odd space dimensions.

2While in much of these lectures I will normalize gauge fields so that Dµ = @µ + iAµ, in this
section I need to put the gauge coupling back in. If you want to return to the nicer normalization,
set the gauge coupling to unity, and put a 1/g2 factor in front of the gauge action.

From: Chiral Symmetry and Lattice Fermions, D.B. Kaplan, https://arxiv.org/abs/0912.2560
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Fig. 2.1 On the left: the ground state for a theory of a single massless Dirac fermion in

(1 + 1) dimensions; on the right: the theory after application of an adiabatic electric field

with all states shifted to the right by �p, given in eqn. (2.1). Filled states are indicated by

the heavier blue lines.

we place the system in a box of size L with periodic boundary conditions, momenta
are quantized as p

n

= 2⇡n/L. The change in axial charge is then

�Q
A

= 2
�p

2⇡/L
=

e

⇡

Z
d2xE(t) =

e

2⇡

Z
d2x ✏

µ⌫

Fµ⌫ , (2.3)

where I expressed the electric field in terms of the field strength F , where F 01 =
�F 10 = E. This can be converted into the local equation using �Q

A

=
R
d2x @

µ

Jµ

A

, a
modification of eqn. (1.26):

@
µ

Jµ

A

= 2im � +
e

2⇡
✏
µ⌫

Fµ⌫ , (2.4)

where in the above equation I have included the classical violation due to a mass term
as well. The second term is the axial anomaly in 1+ 1 dimensions; it would vanish for
a nonabelian gauge field, due to the trace over the gauge generator.

So how did an electric field end up violating chiral charge? Note that this analysis
relied on the Dirac sea being infinitely deep. If there had been a finite number of
negative energy states, then they would have shifted to higher momentum, but there
would have been no change in the axial charge. With an infinite number of degrees of
freedom, though, one can have a “Hilbert Hotel”: the infinite hotel which can always
accommodate another visitor, even when full, by moving each guest to the next room
and thereby opening up a room for the newcomer. This should tell you that it will not
be straightforward to represent chiral symmetry on the lattice: a lattice field theory
approximates quantum field theory with a finite number of degrees of freedom — the
lattice is a big hotel, but quite conventional. In such a hotel there can be no anomaly.

We can derive the anomaly in other ways, such as by computing the anomaly dia-
gram Fig. 2.2, or by following Fujikawa (Fujikawa, 1979; Fujikawa, 1980) and carefully
accounting for the Jacobian from the measure of the path integral when performing
a chiral transformation. It is particularly instructive for our later discussion of lattice
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Fig. 2.2 The anomaly diagram in 1+1 dimensions, with one Pauli-Villars loop and an in-

sertion of 2iM��� at the X.

fermions to compute the anomaly in perturbation theory using Pauli-Villars regulators
of mass M . We replace our axial current by a regulated current

Jµ

A,reg =  �µ� + ��µ�� , (2.5)

where � is our Pauli-Villars field; it follows then that

@
µ

Jµ

A,reg = 2im � + 2iM��� . (2.6)

We are interested in matrix elements of Jµ

A,reg in a background gauge field between

states without any Pauli-Villars particles, and so we need to evaluate h2iM���i in
a background gauge field and take the limit M ! 1 to see if @

µ

Jµ

A,reg picks up any
anomalous contributions that do not decouple as we remove the cuto↵.

To compute h2iM���i we need to consider all Feynman diagrams with a Pauli-
Villars loop, and insertion of the ��� operator, and any number of external U(1)
gauge fields. By gauge invariance, a graph with n external photon lines will contribute
n powers of the field strength tensor Fµ⌫ . For power counting, it is convenient that
we normalize the gauge field so that the covariant derivative is D

µ

= (@
µ

+ iA
µ

); then
the gauge field has mass dimension 1, and Fµ⌫ has dimension 2. In (1 + 1) dimen-
sions h2iM���i has dimension 2, and so simple dimensional analysis implies that the
graph with n photon lines must make a contribution proportional to (Fµ⌫)n/M2(n�1).
Therefore only the graph in Fig. 2.2 with one photon insertion can make a contribution
that survives the M ! 1 limit (the graph with zero photons vanishes). Calculation
of this diagram yields the same result for the divergence of the regulated axial current
as we found in eqn. (2.4).

Exercise 2.1 Compute the diagram in Fig. 2.2 using the conventional normalization of the
gauge field Dµ = (@µ + ieAµ) and verify that 2iMh���i = e

2⇡ ✏µ⌫F
µ⌫ when M ! 1.

Note that in this description of the anomaly we (i) e↵ectively rendered the number
of degrees of freedom finite by introducing the regulator; (ii) the regulator explicitly
broke the chiral symmetry; (iii) as the regulator was removed, the symmetry break-
ing e↵ects of the regulator never decoupled, indicating that the anomaly arises when
the two vertices in Fig. 2.2 sit at the same spacetime point. While we used a Pauli-
Villars regulator here, the use of a lattice regulator will have qualitatively similar
features, with the inverse lattice spacing playing the role of the Pauli-Villars mass,
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and we can turn these observations around: A lattice theory will not correctly repro-
duce anomalous symmetry currents in the continuum limit, unless that symmetry is
broken explicitly by the lattice regulator. This means we would be foolish to expect
to construct a lattice theory with exact chiral symmetry. But can the lattice break
chiral symmetry just enough to explain the anomaly, without losing the important
consequences of chiral symmetry at long distances (such as protecting fermion masses
from renormalization)?

2.2 Anomalies in 3+1 dimensions

2.2.1 The U(1)
A

anomaly

An analogous violation of the U(1)
A

current occurs in 3 + 1 dimensions as well 3.
One might guess that the analogue of ✏

µ⌫

Fµ⌫ = 2E in the anomalous divergence

eqn. (2.4) would be the quantity ✏
µ⌫⇢�

Fµ⌫F ⇢� = 8 ~E · ~B, which has the right dimensions
and properties under parity and time reversal. So we should consider the behavior a
massless Dirac fermion in (3 + 1) in parallel constant E and B fields. First turn on a
B field pointing in the ẑ direction: this gives rise to Landau levels, with energy levels
E

n

characterized by non-negative integers n as well as spin in the ẑ direction S
z

and
momentum p

z

, where

E2
n

= p2
z

+ (2n+ 1)eB � 2eBS
z

. (2.7)

The number density of modes per unit transverse area is defined to be g
n

, which
can be derived by computing the zero-point energy in Landau modes and requiring
that it yields the free fermion result as B ! 0. We have g

n

! p?dp?/(2⇡) with
[(2n+ 1)eB � 2eBS

z

] ! p2?, implying that

g
n

= eB/2⇡ . (2.8)

Th dispersion relation looks like that of an infinite number of one-dimensional fermions
of mass m

n,±, where

m2
n± = (2n+ 1)eB � 2eBS

z

, S
z

= ± 1
2 . (2.9)

The state with n = 0 and S
z

= + 1
2 is distinguished by having m

n,+ = 0; it behaves
like a massless one-dimensional Dirac fermion (with transverse density of states g0)
moving along the ẑ axis with dispersion relation E = |p

z

|. If we now turn on an electric
field also pointing along the ẑ direction we know what to expect from our analysis in
1 + 1 dimensions: we find an anomalous divergence of the axial current equal to

g0eE/⇡ = e2EB/2⇡2 =

✓
e2

16⇡2

◆
✏
µ⌫⇢�

Fµ⌫F ⇢� . (2.10)

If we include an ordinary mass term in the 3 + 1 dimensional theory, then we get

3Part of the content of this section comes directly from John Preskill’s class notes on the strong
interactions, available at his web page: http://www.theory.caltech.edu/⇠preskill/notes.html.
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Fig. 2.3 The U(1)A anomaly diagram in 3+1 dimensions, with one Pauli-Villars loop and

an insertion of 2iM���.

@
µ

Jµ

A

= 2im � +

✓
e2

16⇡2

◆
✏
µ⌫⇢�

Fµ⌫F ⇢� . (2.11)

One can derive this result by computing hM�i��i for a Pauli-Villars regulator as
in the 1 + 1 dimensional example; now the relevant graph is the triangle diagram of
Fig. 2.3.

If the external fields are nonabelian, the analogue of eqn. (2.11) is

@
µ

Jµ

A

= 2im � +

✓
g2

16⇡2

◆
✏
µ⌫⇢�

Fµ⌫

a

F ⇢�

b

Tr T
a

T
b

. (2.12)

If the fermions transform in the defining representation of SU(N), it is conventional
to normalize the coupling g so that Tr T

a

T
b

= 1
2�ab. This is still called an “Abelian

anomaly”, since Jµ

A

generates a U(1) symmetry.

2.2.2 Anomalies in Euclidian spacetime

Continuing to Euclidian spacetime by means of eqns. (1.11)-(1.15) changes the anomaly
equations simply by eliminating the factor of i from in front of the fermion mass:

2d : @
µ

Jµ

A

= 2m � +
e

2⇡
✏
µ⌫

Fµ⌫ (2.13)

4d : @
µ

Jµ

A

= 2m � +

✓
g2

16⇡2

◆
✏
µ⌫⇢�

Fµ⌫

a

F ⇢�

b

Tr T
a

T
b

. (2.14)

2.2.3 The index theorem in four dimensions

For nonabelian gauge theories the quantity on the far right of eqn. (2.14) is a topolog-
ical charge density, with

⌫ =
g2

64⇡2

Z
d4x

E

✏
µ⌫⇢�

Fµ⌫

a

F ⇢�

a

(2.15)

being the winding number associated with ⇡3(G), the homotopy group of maps of S3

(spacetime infinity) into the gauge group G.
Consider then continuing the anomaly equation eqn. (2.12) to Euclidian space and

integrating over spacetime its vacuum expectation value in a background gauge field
(assuming the fermions to be in the N -dimensional representation of SU(N) so that
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Tr T
a

T
b

= 1
2�ab). The integral of @

µ

hJµ

A

i vanishes because it is a pure divergence, so
we get

Z
d4x

E

mh � i = �⌫ . (2.16)

The matrix element above on the right equals
Z
[d ][d ] e�SE (m � )

.Z
[d ][d ] e�SE . (2.17)

where S
E

=  ( /D
E

+ m) . We can expand  and  in terms of eigenstates of the
anti-hermitian operator /D

E

, where

/D
E

 
n

= i�
n

 
n

,

Z
d4x

E

 †
m

 
n

= �
mn

, (2.18)

with

 =
X

c
n

 
n

,  =
X

c
n

 †
n

. (2.19)

Then

Z
d4x

E

m h � i =

0

@
X

n

Z
d4x

E

m †
n

� 
n

Y

k 6=n

(i�
k

+m)

1

A
.Y

k

(i�
k

+m)

= m
X

n

Z
d4x

E

 †
n

� 
n

/(i�
n

+m) . (2.20)

Recall that {�, /D} = 0; thus

/D 
n

= i�
n

 
n

implies /D(� 
n

) = �i�
n

(� 
n

) . (2.21)

Thus for �
n

6= 0, the eigenstates  
n

and (� 
n

) must be orthogonal to each other (they
are both eigenstates of /D with di↵erent eigenvalues), and so  †

n

� 
n

vanishes for �
n

6= 0
and does not contribute to the sum in eqn. (2.20). In contrast, modes with �

n

= 0 can
simultaneously be eigenstates of /D and of �; let n+, n� be the number of RH and LH
zeromodes respectively. The last integral in then just equals (n+ � n�) = (n

R

� n
L

),
and combining with eqn. (2.16) we arrive at the index equation

n� � n+ = ⌫ , (2.22)

which states that the di↵erence in the number of LH and RH zeromode solutions to
the Euclidian Dirac equation in a background gauge field equals the winding number
of the gauge field. With N

f

flavors, the index equation is trivially modified to read

n� � n+ = N
f

⌫ . (2.23)

This link between eigenvalues of the Dirac operator and the topological winding num-
ber of the gauge field provides a precise definition for the topological winding number
of a gauge field on the lattice (where there is no topology) — provided we have a
definition of a lattice Dirac operator which exhibits exact zeromodes. We will see that
the overlap operator is such an operator.



Anomalies in 3+1 dimensions

X X

X

X

X

Fig. 2.4 Anomalous three-point function of three currents.

2.2.4 More general anomalies

Even more generally, one can consider the 3-point correlation function of three arbi-
trary currents as in Fig. 2.4,

hJ↵

a

(k)J�

b

(p)J�

c

(q)i , (2.24)

and show that the divergence with respect to any of the indices is proportional to a
particular group theory factor

k
µ

hJµ

a

(k)J↵

b

(p)J�

c

(q)i / Tr Q
a

{Q
b

, Q
c

}
���
R�L

✏↵�⇢�k
⇢

k
�

, (2.25)

where the Qs are the generators associated with the three currents in the fermion
representation, the symmetrized trace being computed as the di↵erence between the
contributions from RH and LH fermions in the theory. The anomaly A for the fermion
representation is defined by the group theory factor

Tr (Q
a

{Q
b

, Q
c

})
���
R�L

⌘ A d
abc

, (2.26)

with d
abc

being the totally symmetric invariant tensor of the symmetry group. For
a simple group G (implying G is not U(1) and has no factor subgoups), d

abc

is only
nonzero for G = SU(N) with N � 3; even in the case of SU(N), d

abc

will vanish
for real irreducible representations (for which Q

a

= �Q⇤
a

), or for judiciously chosen
reducible complex representations, such as 5̄ � 10 in SU(5). For a semi-simple group
G1 ⇥ G2 (where G1 and G2 are themselves simple) there are no mixed anomalies
since the generators are all traceless, implying that if Q 2 G1 and Q 2 G2 then
Tr (Q

a

{Q
b

,Q
c

}) / Tr Q
a

= 0. When considering groups with U(1) factors there
can be nonzero mixed anomalies of the form U(1)G2 and U(1)3 where G is simple;
the U(1)3 anomalies can involve di↵erent U(1) groups. With a little group theory it
is not di�cult to compute the contribution to the anomaly of any particular group
representation.

If a current with an anomalous divergence is gauged, then the theory does not make
sense. That is because the divergenceless of the current is required for the unphysical
modes in the gauge field A

µ

to decouple; if they do not decouple, their propagator
has a piece that goes as k

µ

k
⌫

/k2 which does not fall o↵ at large momentum, and the
theory is not renormalizable.
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When global U(1) currents have anomalous divergences, that is interesting. We
have seen that the U(1)

A

current is anomalous, which explains the ⌘0 mass; the di-
vergence of the axial isospin current explains the decay ⇡0 ! ��; the anomalous
divergence of the baron number current in background SU(2) in the Standard Model
predicts baryon violation in the early universe and the possibility of weak-scale baryo-
genesis.

Exercise 2.2 Verify that all the gauge currents are anomaly-free in the standard model
with the representation in eqn. (1.45). The only possible G3 anomalies are for G = SU(3) or
G = U(1); for the SU(3)3 anomaly use the fact that a LH Weyl fermion contributes +1 to
A if it transforms as a 3 of SU(3), and contributes �1 to A if it is a 3. There are two mixed
anomalies to check as well: U(1)SU(2)2 and U(1)SU(3)2.

This apparently miraculous cancellation is suggestive that each family of fermions may be
unified into a spinor of SO(10), since the vanishing of anomalies which happens automatically
in SO(10) is of course maintained when the symmetry is broken to a smaller subgroup, such
as the Standard Model.

Exercise 2.3 Show that the global B (baryon number) and L (lepton number) currents are
anomalous in the Standard Model eqn. (1.45), but that B � L is not.

2.3 Strongly coupled chiral gauge theories
Strongly coupled chiral gauge theories are particularly intriguing, since they can con-
tain light composite fermions, which could possibly describe the quarks and leptons
we see. A nice toy example of a strongly coupled chiral gauge theory is SU(5) with
LH fermions

 = 5 , � = 10 . (2.27)

It so happens that the  and the � contribute with opposite signs to the (SU(5))3

anomaly A in eqn. (2.26), so this seems to be a well defined gauge theory. Further-
more, the SU(5) gauge interactions are asymptotically free, meaning that interactions
becomes strong at long distances. One might therefore expect the theory to confine as
QCD does. However, unlike QCD, there are no gauge invariant fermion bilinear con-
densates which could form, and which in QCD are responsible for baryon masses. That
being the case, might there be any massless composite fermions in the spectrum of
this theory? ’t Hooft came up with a nice general argument involving global anomalies
that suggests there will be.

In principle there are two global U(1) chiral symmetries in this theory correspond-
ing to independent phase rotations for  and �; however both of these rotations have
global⇥SU(5)2 anomalies, similar to the global⇥SU(3)2 of the U(1)

A

current in QCD.
This anomaly can only break one linear combination of the two U(1) symmetries, and
one can choose the orthogonal linear combination which is anomaly-free. With a little
group theory you can show that the anomaly-free global U(1) symmetry corresponds
to assigning charges

 = 53 , � = 10�1 , (2.28)

where the subscript gives the global U(1) charge. This theory has a nontrivial global
U(1)3 anomaly, A = 5 ⇥ (3)3 + 10 ⇥ (�1)3 = 125. ’t Hooft’s argument is that


