- 1. In QED with an electron but no other charged particles, with $\alpha(m_e) = \frac{1}{137}$, at what scale Λ does the 1-loop beta function predict that $\alpha(\Lambda) = \infty$? Express Λ in terms of the Planck mass, where quantum gravity gets strong, $m_P = \sqrt{\hbar c/G} = 10^{19}$ GeV.
- 2. Suppose you add to QED a new "dark photon" B_{μ} with field strength $B_{\mu\nu}$ which couples to a dark matter fermion χ with coupling g. The dark photon does not couple directly to the electron ψ , but has a small mixing term with the ordinary photon:

$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}B_{\mu\nu}B^{\mu\nu} - \frac{\epsilon}{2}B_{\mu\nu}F^{\mu\nu} + \bar{\psi}\left[i(\partial \!\!\!/ + ieA\!\!\!/) - m\right]\psi + \bar{\chi}\left[i(\partial \!\!\!/ + igB\!\!\!/) - M\right]\chi \ . \tag{1}$$

Sho that there is a Coulomb force between the electron and the dark fermion. What is the relative strength to the ordinary Coulomb force? (Treat the ϵ term in perturbation theory as a B-A vertex).