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Fujikawa Anomaly Paper Note

This is a note on Fujikawa’s papers on deriving the anomaly from the path integral:

• Phys. Rev. Lett. 42 (1979) 1195

• Phys. Rev. D22 (1980) 1499

Consider the Euclidian path integral for a massive fermion interacting with a gauge field:

Z = N
∫
dψ̄dψ e−S , S =

∫
d4x

(
ψ̄
(
/D +m

)
ψ +

1

2g2
TrF 2

µν

)
(1)

where

{γµ, γν} = 2δµν , {γ5, γµ} = 0 , γ†5 = γ5 , Tr γ5γµγνγσγτ = 4εµνστ . (2)

and

Dµ = ∂µ + iAµ , Aµ = AaµTa , TrTaTb =
1

2
δab . (3)

The operator /D is anti Hermitian, and has orthonormal eigenfunctions φn(x) such that

/Dφn = iλnφn , /Dγ5φn = −iλnγ5φn , λn ∈ Reals , (4)

We can use these eigenstates as a basis for expanding ψ and ψ̄ in the path integral:

ψ(x) =
∑
n

anφn(x) , ψ̄(x) =
∑
n

φ†n(x)b̄n , (5)

where the an, b̄n are Grassmann numbers. The path integral measure is then

dψ̄dψ =
∏
m,n

b̄man . (6)

Under a change of variables corresponding to an x-dependent chiral rotation:

ψ(x)→ ψ′(x) = eiα(x)γ5ψ(x) , ψ̄(x)→ ψ̄′(x) = ψ̄(x)eiα(x)γ5 . (7)

We will want to derive the Ward identity following from δZ
δα(x) |α=0 = 0. The “classical” contribution

comes from the change in the action,

S → S +

∫
d4x i∂µα(x)ψ̄γµγ5ψ + 2imα(x)ψ̄γ5ψ +O(α2) . (8)

The “anomalous” part arises from the Jacobian that arises from the path integral measure, which we
need to compute. We write

ψ′ =
∑
n

a′nφn =
∑
m,n

amCmnφn , ψ̄′ =
∑
m,n

φ†mCmnb̄n (9)
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where

Cmn =

∫
d4xφ†me

iαγ5φn. (10)

Therefore since dam = ∂
∂am

we find

dψ̄′dψ′ = dψ̄dψ detC−2 = dψ̄dψe−2Tr lnC . (11)

To compute the variation we want, we need only compute the log to linear order in α,

−2Tr lnC ' −2iTrα(x)γ5 ≡ −2i

∫
d4xα(x)A(x) , A(x) =

∑
n

φ†n(x)γ5φn(x). (12)

To define A(x) well we need to regulate it. Fujikawa chooses to regulate the sum by inserting a factor

of e−λ
2
n/M

2

, subsequently taking the M → ∞ limit. This is a good choice of regulator because it is gauge
invariant. Thus we have

A(x) = lim
M→∞

〈x|γ5e
/D2/M2

|x〉 . (13)

We will wish to expand this in powers of the gauge field, so we write

/D
2

= /∂
2

+
(
/D

2 − /∂
2
)

(14)

where the last term is O(Aµ). Now use the Baker-Campbell-Hausdorff theorem

eXeY = eX+Y+ 1
2 [X,Y ]+ 1

12 ([X,[X,Y ]]+[Y,[Y,X]])+... , (15)

setting

X = −
/∂

2

M2
= − ∂2

M2
, Y =

/D
2

M2
=
DµDµ + i

2Fµνγµγν

M2
(16)

where I used {γµ, γν} = 2δµν and [Dµ, Dν ] = iFµν . Then we have

e /D/M
2

= e
∂2

M2 eX+Y+ 1
2 [X,Y ]+...

= e
∂2

M2

[
1 +

1

M2

(
2iA · ∂ + i(∂ ·A)−A2 +

i

2
Fµνγµγν

)
+

1

M4

(
1

2

(
2iA · ∂ + i(∂ ·A)−A2 +

i

2
Fµνγµγν

)2

+
[
−∂2, /D

2
])

+O

(
1

M6

)]
(17)

Note that

〈x|e
∂2

M2O|x〉 =

∫
d4k

(2π)4

∫
d4y 〈x|e

∂2

M2 |k〉〈k|y〉〈y|O|x〉 =

∫
d4y 〈y|O|x〉

∫
d4k

(2π)4
e−

k2

M2 eik(y−x) . (18)

Note that:

1. The integral over k has dimensions of (mass)
4

and hence can only grow as fast as M4 in the large M
limit; therefore from the 〈y|O|x〉 we need only consider terms falling off no faster than 1/M4;

2. To compute A(x) in eq. (13), we need only pick out from O terms which do not vanish when traced
over Dirac indices with a power of γ5.
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These two considerations greatly simplify our work, and we get

A(x) = lim
M→∞

− 1

8M4
Tr γ5γµγνγσγτ

∫
d4y 〈y|TrFµνFστ |x〉

∫
d4k

(2π)4
e−

k2

M2 eik(y−x)

= lim
M→∞

− 1

2M4
εµνστTrFµν(x)Fστ (x)

∫
d4k

(2π)4
e−

k2

M2

= − 1

16π2
TrFF̃ (x) (19)

where F̃µν = 1
2εµνστFστ . In going from the first to the second line above I used 〈x|F 2|y〉 = F 2(x)δ4(x− y).

Note that some of the traces are over the entire Hilbert space, some are over only Dirac indices, some are
only over gauge group indices...you should be able tell from context.

We can now compute the Ward identities; the derivative of the partition function with respect to α(x)
must vanish, because we just did a change of integration variables. Using our expression for A(x) and eq.
(8) we have

0 =
δZ

δα(x)

∣∣∣∣∣
α=0

=
δ

δα(x)
N
∫
dψ̄dψe−S−i

∫
d4xα(x)[−∂µψ̄γµγ5ψ+2mψ̄γ5ψ+2A(x)]

∣∣∣∣∣
α=0

=

〈
−∂µψ̄γµγ5ψ + 2mψ̄γ5ψ −

1

8π2
TrFF̃ (x)

〉
(20)

This gives the Euclidian version of the Ward identity,

∂µ〈ψ̄γµγ5ψ〉 = 〈2mψ̄γ5ψ −
1

8π2
TrFF̃ (x)〉 (21)

It is interesting to consider the integral of the anomaly; on the one hand we have∫
d4xA(x) = − 1

16π2

∫
d4xTrFF̃ , (22)

while on the other we have ∫
d4xA(x) =

∑
n

∫
d4xφ†n(x)γ5φn(x) . (23)

From eq. (4) we see that the functions φn and γ5φn correspond to eigenvalues ±iλn, and so must be
orthogonal to each other for λn 6= 0; thus only the eigenfunctions with λn = 0 can contribute to the sum. If
/Dφ = 0, then [ /D, γ5]φ = 0 and we can take φ to be an eigenstate of γ5. Thus we find∫

d4xA(x) = n+ − n− ≡ ν , (24)

where n± are the number of positive and negative chirality zeromodes of the Dirac operator. Equating eq.
(22) and eq. (24) we get the interesting result

− 1

16π2

∫
d4xTrFF̃ = ν , (25)

which is an integer. Seeing an integer result leads us to consider the topology of gauge fields.
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