1. Consider a Yukawa theory with a complex scalar field ϕ and a massless Dirac fermion Ψ :

$$\mathcal{L} = \bar{\Psi}i\partial\!\!\!/\Psi - \partial_\mu\phi^*\partial^\mu\phi - M^2|\phi|^2 - g(\phi\bar{\Psi}_L\Psi_R + \phi^*\bar{\Psi}_R\Psi_L) - \frac{\lambda}{4}|\phi|^4 , \qquad (1)$$

where $\Psi_L = P_- \Psi$, $\Psi_R = P_+ \Psi$, $\bar{\Psi}_L = \bar{\Psi} P_+$, $\bar{\Psi}_R = \bar{\Psi} P_-$, $P_{\pm} = (1 \pm \gamma_5)/2$.

- (a) What are the symmetries of the theory? Explain why they imply that we do not need to include a counterterm for a Ψ mass, or scalar interactions such as ϕ^3 .
- (b) Write down the Feynman rules. Why would you want to put an arrow on the ϕ propagator?
- (c) Draw the one-loop diagrams to be computed for $(Z_{\Psi} 1)$, $(Z_{\phi} 1)$, $(Z_M 1)$, $(Z_g 1)$ and $(Z_{\lambda} 1)$ using the analogous definition of the Zs as was done for the Yukawa theory discussed in class and in Srednicki, chapter 51.
- (d) Compute the coefficients of the $1/\epsilon$ poles for $(Z_{\Psi} 1)$, $(Z_{\phi} 1)$, $(Z_M 1)$, $(Z_g 1)$ and $(Z_{\lambda} 1)$ at one loop, using dimensional regularization, where $d = 4 \epsilon$ as in Srednicki.