- 1. (a) Show that for any connected Feynman graph, L = P V + 1, where L is the number of loop integrations, V is the number of vertices, and P is the number of propagators (internal lines).
 - (b) The parameter \hbar only enters quantum field theory through the phase factor in the path integral, $e^{iS/\hbar}$, where S is independent of \hbar . Show that a connected Feynman diagram with L loops is proportional to \hbar^{L-1} . Therefore the loop expansion is sometimes called the "semiclassical" expansion. Note that in the limit $\hbar \to 0$ one would expect the stationary phase approximation to work; why does this correspond to the classical equations of motion?
- 2. The Fermi theory for the weak interactions of leptons involves the contact interaction

$$\mathcal{L}_{\rm int} = -\frac{G_F}{\sqrt{2}} J^{\nu} J^{\dagger}_{\nu} , \qquad J^{\nu} = \bar{\psi}_e \gamma^{\nu} (1 - \gamma_5) \psi_{\nu_e} + \bar{\psi}_{\mu} \gamma^{\nu} (1 - \gamma_5) \psi_{\nu_{\mu}} , \qquad (1)$$

where the subscripts e, ν_e, μ, ν_{μ} refer to the electron, the electron neutrino, the muon, and the muon neutrino, each of which has its own Dirac field. G_F is called the Fermi constant and has dimension of $1/\text{mass}^2$:

$$G_F = 1.17 \times 10^{-5} \text{ GeV}^{-2}$$
 (2)

In this problem you are to compute the lifetime of the muon, which has a mass

$$m_{\mu} \equiv M = 106 \text{ MeV} , \qquad (3)$$

making the simplifying assumptions that the outgoing particles are all massless,

$$m_e = m_{\nu_e} = m_{\nu_\mu} = 0 . (4)$$

This is a decent approximation, since the heaviest of the decay products is the electron, and $m_e \simeq m_{\mu}/200$.

- (a) Draw the tree level diagram for the decay of the muon, $\mu^- \to e^- \nu_\mu \bar{\nu}_e$ where $\bar{\nu}_e$ is the anti-particle of the electron neutrino. Designate the momenta as $p_\mu \equiv p$, $p_{\nu_\mu} \equiv k_1$, $p_e \equiv k_2$, $p_{\bar{\nu}_e} \equiv k_3$, and the spins for $\{\mu, \nu_\mu, e, \bar{\nu}_e\}$ to be respectively s_0, s_1, s_2, s_3 (you will sum over spins, so their names are not important).
- (b) Compute the Feynman amplitude $i\mathcal{M}$ for this decay at tree level, in terms of spinors and gamma matrices.
- (c) Write out $|\mathcal{M}|^2$ in a form involving spinors and gamma matrices, without any "*" conjugation symbols. Take care to understand how spinor indices and Lorentz indices are contracted in this expression.
- (d) Take your expression for $|\mathcal{M}|^2$ and <u>average</u> over the initial muon spin, and <u>sum</u> over all the other particle spins. Use the relations

$$\sum_{s} u_{s}(p)\bar{u}_{s}(p) = (-\not p + m) , \qquad \sum_{s} v_{s}(p)\bar{v}_{s}(p) = (-\not p - m)$$
(5)

to express $\langle |\mathcal{M}|^2 \rangle$ (where $\langle \rangle$ denotes the spin averaging you performed) in terms of traces over gamma matrices. Note you will have a product of traces, with nontrivial Lorentz index contraction.

- (e) Perform all the gamma matrix traces and express your result for $\langle |\mathcal{M}|^2 \rangle$ as a polynomial in the variables of the problem, the four 4-momenta and the muon mass. You should find $\langle |\mathcal{M}|^2 \rangle \propto (k_1 \cdot k_2)(k_3 \cdot p)$ before continuing to the next part of the problem; or if you cannot, assume that form before continuing.
- (f) The formula for the differential decay width in the rest frame of the muon is

$$d\Gamma = \frac{d^3 \mathbf{k}_1}{(2\pi)^3 2\omega_1} \frac{d^3 \mathbf{k}_2}{(2\pi)^3 2\omega_2} \frac{d^3 \mathbf{k}_3}{(2\pi)^3 2\omega_3} (2\pi)^4 \delta(\omega_1 + \omega_2 + \omega_3 - M) \delta^3(\mathbf{k}_1 + \mathbf{k}_2 + \mathbf{k}_3) \frac{\langle |\mathcal{M}|^2 \rangle}{2M}$$
(6)

where the 4-momenta for the outgoing massless particles are $k_i^{\mu} = \{\omega_i, \mathbf{k}_i\}^{\mu} = \omega_i \{1, \hat{\mathbf{n}}_i\}^{\mu}$ where $\hat{\mathbf{n}}_i$ are unit 3-vectors. Compute the total width Γ by performing the integrations. Turn over page for hints.

Hints:

- i. Express your formula for $\langle |\mathcal{M}|^2 \rangle$ in terms of the ω_i and the $\hat{\mathbf{n}}_i$, and perform the integration over $d^3\mathbf{k}_3$.
- ii. Write the remaining $d^3\mathbf{k}$ in spherical coordinates, with $|\mathbf{k}| = \omega$. You can then do three of the four remaining angular integrals for free, leaving integration over $d\omega_1$, $d\omega_2$ and $d\cos\theta_{12}$, where $\hat{\mathbf{n}}_1 \cdot \hat{\mathbf{n}}_2 \equiv \cos\theta_{12}$. (θ_{12} is the polar angle between the electron and the muon neutrino).
- iii. You still have a factor $\delta(\omega_1 + \omega_2 + \omega_3 M)$, but because of 3-momentum conservation, ω_3 should be expressed as a function of ω_1 , ω_2 and $\cos \theta_{12}$. After you have done so, do the $d \cos \theta_{12}$ integration, eliminating this remaining δ function.
- iv. You are left with the ω_1 and ω_2 integrals. The only tricky part left is to figure out the bounds on these integrals. What is the range of values ω_1 can take? It can be as small as zero, but not as large as M. Once you have figured out the upper bound ω_1^{max} , then ask: given a value for ω_1 , what is the allowed range for ω_2 ? Once you figure this out, the remaining integrals

$$\int_0^{\omega_1^{\max}} \int_{\omega_2^{\min}}^{\omega_2^{\max}} d\omega_1 d\omega_2$$

are readily computed, where in principle, ω_2^{\min} and ω_2^{\max} are functions of ω_1 .

(g) Using the values for the muon mass M and G_F , compute Γ in MeV. The compute the muon lifetime $\tau = 1/\Gamma$ in seconds, using the conversion $(1 \text{ GeV})^{-1} = 6.58 \times 10^{-25}$ sec. How does your answer compare with the experimental result, $\tau = 2.20 \times 10^{-6}$ sec?