- 1. With $\sigma^{\mu\nu} = (i/2)[\gamma^{\mu}, \gamma^{\nu}]$, compute how $\bar{\Psi}\sigma^{\mu\nu}\Psi$ transforms under C, P and T.
- 2. On problem set #1 we saw that all fermion bilinears can be expressed as a linear combination of the sixteen bilinears $\bar{\Psi}\Gamma_a\Psi$ where Γ_a is one of the matrices $\{1, \gamma_5, \gamma^{\mu}, \gamma^{\mu}\gamma_5, \sigma^{\mu\nu}\}$ and $\operatorname{Tr}\Gamma_a^{\dagger}\Gamma_b = 4\delta_{ab}$.
 - (a) Express $\bar{\Psi}\sigma_{\mu\nu}\gamma_5\Psi$ in terms of the $\bar{\Psi}\Gamma_a\Psi$. (Hint: the indices really do tell you how the object transforms under the Lorentz group, so you cannot expect $\bar{\Psi}\sigma^{\mu\nu}\gamma_5\Psi$ to contain a term like $\bar{\Psi}\Psi$.)
 - (b) Revised. Define the operator $S_3 = \int d^3x \bar{\Psi} \sigma^{12} \Psi$. What is its action on electron states $|\mathbf{p}, s, \mp\rangle$, where \mp refers to electric charge (eg, "-"=particle, "+"= antiparticle), $s = \pm$ is the spin index, and \mathbf{p} is the 3-momentum assumed to be nonrelativistic: $|\mathbf{p}| \ll m$. You can work out S_3 in the chiral basis, using the *u* and *v* spinors given in problem set #1, but using indices s = 1, -1 instead of s = 1, 2 so that you can express the *s* dependence of your answer simply.
- 3. Consider a theory of a massless Dirac fermion, $\mathcal{L} = \bar{\Psi} i \partial \Psi$. We know that this is equivivalent to a theory of two uncoupled massless Weyl fermions, and therefore should have an independent phase rotation symmetry for each one. In the Dirac language, the two phase symmetries are $\Psi \to e^{i\alpha}\Psi$ and $\Psi \to e^{i\beta\gamma_5}\Psi$. This latter symmetry is called a chiral symmetry.
 - (a) Show that $\Psi \to e^{i\beta\gamma_5}\Psi$ is a symmetry of the massless Dirac theory, in a basis independent manner.
 - (b) What is the Noether current j_5^{μ} corresponding to this symmetry?
 - (c) Express the conserved charge $Q_5 = \int d^3x j_5^0$ in terms of the *b* and *d* creation and annihilation operators. Can you interpret what this chiral charge is physically?
- 4. Consider the following Lagrangian for two real scalar fields $\phi_{1,2}$ interacting with a Dirac fermion,

$$\mathcal{L} = \bar{\Psi}(i\partial \!\!\!/ - m)\Psi + \frac{1}{2} \left(-\partial_{\mu}\phi_1 \partial^{\mu}\phi_1 - \partial_{\mu}\phi_2 \partial^{\mu}\phi_2 - m_1^2\phi_1^2 - m_2^2\phi_2^2 \right) + g\phi_1 \bar{\Psi}\Psi + ih\phi_2 \bar{\Psi}\gamma_5 \Psi .$$
(1)

- (a) Show that the interaction terms are Hermitian if coupling constants g and h are real.
- (b) Show that this Lagrangian is invariant under C, P and T, and make a table for how ϕ_1 and ϕ_2 must transform under these three discrete symmetries.
- (c) Suppose if instead of just the scalar mass terms, we add to \mathcal{L} a more general scalar interaction $-V(\phi_1, \phi_2)$, where V is a local hermitian polynomial consisting only of terms quartic in scalar fields (no derivatives). Which of the following symmetries can you break with the proper choice of V: C, P, T, CP, CT, PT, CPT?
- (d) Consider the special case of the above Lagrangian with m = 0, $m_1 = m_2 = \mu$, h = g. For these values of the couplings the theory has an exact chiral U(1) symmetry where $\Psi \to e^{i\alpha\gamma_5}\Psi$ and the scalar fields also transform. How must the scalars transform for this to be a symmetry? If you add $V(\phi_1, \phi_2)$ to this theory (consisting only of quartic terms, as above), what is the most general form of V that respects this chiral U(1) symmetry?

5. Prove eq. 42.10 in Srednicki:

$$\int \frac{d^4p}{(2\pi)^4} \frac{e^{ip(x-y)}f(p)}{p^2 + m^2 - i\epsilon} = i\theta(x^0 - y^0) \int \widetilde{dp}e^{ip(x-y)}f(p) + i\theta(y^0 - x^0) \int \widetilde{dp}e^{-ip(x-y)}f(-p)$$
(2)

where in the $\int \widetilde{dp}$ integrals, $p^0 = \omega = \sqrt{|\mathbf{p}|^2 + m^2}$, and

$$\theta(\tau) = \begin{cases} 1 & \tau > 0 \\ 0 & \tau < 0 \end{cases}$$
(3)

Be clear about how you are evaluating contour integrals.