QFT 570 Homework 5

heavy- ϕ theory

The Lagrangian for the following contains kinetic and mass terms for two types of fields, φ and χ , with a 3-point φ interaction and a 2-1 χ - φ interaction.

$$\mathcal{L} = -\frac{1}{2}Z_{\varphi}\partial^{\mu}\varphi\partial_{\mu}\varphi - \frac{1}{2}Z_{m}m^{2}\varphi^{2} + Y\varphi - \frac{1}{2}Z_{\chi}\partial^{\mu}\chi\partial_{\mu}\chi - \frac{1}{2}Z_{M}M^{2}\chi^{2} + \frac{1}{6}Z_{g}g\tilde{\mu}^{\frac{\epsilon}{2}}\varphi^{3} + \frac{1}{2}Z_{h}h\tilde{\mu}^{\frac{\epsilon}{2}}\varphi\chi^{2}$$
(1)

a.

Figure 1: Tree-level diagrams contributing to $\chi\chi \to \chi\chi$ scattering. The solid lines represent external χ s while the dashed lines represent internal φ s.

There are three diagrams contributing to $\chi\chi$ scattering at tree level. They are analogous to the *s*, *t*, and *u*, channel diagrams we would see in scalar χ^3 but here contain internal φ s. The amplitude for such scattering may be built similarly by reading the feynman rules from the Lagrangian as:

$$i\mathcal{T} = \left(iZ_hh\right)^2 \left[\frac{-i}{m^2 - s - i\epsilon} + \frac{-i}{m^2 - t - i\epsilon} + \frac{-i}{m^2 - u - i\epsilon}\right]$$
(2)

$$=ih^{2}\left[\frac{1}{m^{2}-s-i\epsilon}+\frac{1}{m^{2}-t-i\epsilon}+\frac{1}{m^{2}-u-i\epsilon}\right]$$
(3)

where I have set the lowest-order value of Z_h equal to unity and have used the usual definitions of the mandelstam variables for the mostly-plus metric

$$-s = (k_1 + k_2)^2 \qquad -t = (k_1 - k_1')^2 \qquad -u = (k_1 - k_2')^2$$

In the center of mass frame, $\vec{k}_1 = -\vec{k}_2$ and $\vec{k}'_1 = -\vec{k}'_2$.

b.

Here, we expand the above amplitude to second order in the external χ momentum to focus on low-energy interactions of χ s. Ignoring the *i* ϵ s for the moment:

$$i\mathcal{T} = ih^2 \frac{1}{m^2} \left[\frac{1}{1 - \frac{s}{m^2}} + \frac{1}{1 - \frac{t}{m^2}} + \frac{1}{1 - \frac{u}{m^2}} \right]$$
(4)

$$=ih^{2}\frac{1}{m^{2}}\left[\left(1+\frac{s}{m^{2}}+\cdots\right)+\left(1+\frac{t}{m^{2}}+\cdots\right)+\left(1+\frac{u}{m^{2}}+\cdots\right)\right]$$
(5)

$$=ih^{2}\frac{1}{m^{2}}\left[3+\frac{4M^{2}}{m^{2}}+\mathcal{O}\left(k^{4}\right)\right]$$
(6)

where I have used the condition $s + t + u = 4M^2$. As we intend to be in the limit $M \ll m$, the resulting expansion in $\frac{M}{m}$ is expected.

c.

The proposed effective theory retains the kinetic and mass terms for only the χ field and interaction terms $\sim \chi^4$.

$$\mathcal{L}_{EFT} = -\frac{1}{2}\partial_{\mu}\chi\partial^{\mu}\chi - \frac{1}{2}M^{2}\chi^{2} - \frac{a}{m^{2}}\frac{\chi^{4}}{4!} - \frac{bM^{2}}{m^{4}}\frac{\chi^{4}}{4!} - \frac{c}{m^{4}}\frac{\left(\partial_{\mu}\chi\partial^{\mu}\chi\right)\chi^{2}}{4} + \cdots$$

The tree level scattering in the effective theory has contributions from diagrams with each 4-point vertex.

$$i\mathcal{T}_{EFT} = -i\frac{a}{m^2} - i\frac{bM^2}{m^4} + \sum_{i,j \ i \neq j} i\frac{c}{m^4}(p_i \cdot p_j)$$
(7)

where the 2-derivative vertex has been evaluated with all momenta incoming/outgoing so that the negative signs associated with the momentum orientations cancel and we are left only with the $(-i)^2$ minus sign in momentum space (schematically, $\partial \partial \rightarrow -p_i \cdot p_j$).

d.

By comparing the results from the two theories at a renormalization scale of $\mu = m$, we will find the matching conditions on the effective coupling constants a, b, and c.

$$a = -3h^2$$
$$b = -4h^2$$
$$c = 0$$

e.

This operator interpreted in momentum space gives a multiplicative factor of $-k^2$ on the 4- χ vertex where k is the 4-momentum of one of the external χ s. Because our external legs are placed on shell, this factor of $k^2 = -M^2$ making this term redundant in light of the included b term.

2D SHO

$$\mathcal{H} = \frac{1}{2} \left(p_i p_i + \omega^2 x_i x_i \right) = \omega \left(a_i^{\dagger} a_i + 1 \right) \tag{8}$$

First, we need to reinsert the factors of ω in the ladder operators:

$$a_{i} = \sqrt{\frac{\omega}{2}} \left(x_{i} + \frac{i}{\omega} p_{i} \right) \qquad a_{i}^{\dagger} = \sqrt{\frac{\omega}{2}} \left(x_{i} - \frac{i}{\omega} p_{i} \right)$$
(9)

now, the 2-dimensional Hamiltonian in terms of the number operator is indeed the expected Hamiltonian in x and p.

$$\omega\left(a_{i}^{\dagger}a_{i}+1\right) = \omega\left(\frac{\omega}{2}\left(x_{i}-\frac{i}{\omega}p_{i}\right)\left(x_{i}+\frac{i}{\omega}p_{i}\right)+1\right)$$
(10)

$$= \omega \left(\frac{\omega}{2} \left(x_i x_i + \frac{1}{\omega^2} p_i p_i + \frac{i}{\omega} \underbrace{[x_i, p_i]}_{i\delta_{ii}} \right) + 1 \right)$$
(11)

$$=\frac{1}{2}\left(p_i p_i + \omega^2 x_i x_i\right) \tag{12}$$

These ladder operators still satisfy

$$[a_i, a_j] = \begin{bmatrix} a_i^{\dagger}, a_j^{\dagger} \end{bmatrix} = 0 \qquad \begin{bmatrix} a_i, a_j^{\dagger} \end{bmatrix} = \delta_{ij}$$
(13)

a.

Degeneracy of the n^{th} energy level occurs when multiple n_1 and n_2 occupations result in the same value of $n_1 + n_2 = n$. For example, the level n = 2 has degeneracies from $|n_1, n_2\rangle$ states: $|2, 0\rangle, |1, 1\rangle$, and $|0, 2\rangle$. For any particular value of n, once n_1 is chosen, n_2 is fixed. For each value of n, there are n + 1 possible values of n_1 that satisfy the requirement of integer positivity for both n_1 and n_2 . This means the degeneracy for the energy state E_n is n + 1. Examples for a sanity check:

$$n = 0 \quad E = 1\omega \qquad |0,0\rangle \tag{14}$$

$$n = 1 \quad E = 2\omega \qquad |1,0\rangle \quad |0,1\rangle \tag{15}$$

$$n = 2 \quad E = 3\omega \qquad |2,0\rangle \quad |1,1\rangle \quad |0,2\rangle \tag{16}$$

$$n = 3 \quad E = 4\omega$$
 $|3,0\rangle$ $|2,1\rangle$ $|1,2\rangle$ $|0,3\rangle$ (17)

$$n = 4 \quad E = 5\omega \qquad |4,0\rangle \quad |3,1\rangle \quad |2,2\rangle \quad |1,3\rangle \quad |0,4\rangle \tag{18}$$

b.

If David defines the operators $O_A = a^{\dagger}Aa$ and $O_B = a^{\dagger}Ba$, then their commutator may be evaluated as

$$[O_A, O_B] = \left[a_i^{\dagger} A_{ij} a_j, a_k^{\dagger} B_{k\ell} a_\ell\right]$$
(19)

$$=a_{i}^{\dagger}\left[A_{ij}a_{j},a_{k}^{\dagger}\right]B_{k\ell}a_{\ell}+a_{k}^{\dagger}\left[a_{i}^{\dagger},B_{k\ell}a_{\ell}\right]A_{ij}a_{j}$$

$$\tag{20}$$

$$=a_{i}^{\dagger}A_{ij}\delta_{jk}B_{k\ell}a_{\ell}-a_{k}^{\dagger}B_{k\ell}\delta_{i\ell}A_{ij}a_{j}$$

$$\tag{21}$$

$$=a_{i}^{\dagger}A_{ik}B_{k\ell}a_{\ell}-a_{k}^{\dagger}B_{ki}A_{ij}a_{j}$$

$$\tag{22}$$

$$=a_{i}^{\dagger}\left[A,B\right]_{i\ell}a_{\ell}\tag{23}$$

c.

Show that the operators Q_{α} are associated with a conserved vector-like quantity.

$$Q_{\alpha} = \frac{1}{2} a_{i}^{\dagger} \sigma_{ij}^{\alpha} a_{j} \tag{24}$$

with

$$\sigma^{1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \sigma^{2} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \sigma^{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

$$Q_{1} = \frac{1}{2} \begin{pmatrix} a_{1}^{\dagger} a_{2} + a_{2}^{\dagger} a_{1} \end{pmatrix}$$

$$Q_{2} = \frac{i}{2} \begin{pmatrix} a_{2}^{\dagger} a_{1} - a_{1}^{\dagger} a_{2} \end{pmatrix}$$
(25)
(26)

$$Q_3 = \frac{1}{2} \left(a_1^{\dagger} a_1 - a_2^{\dagger} a_2 \right) \tag{27}$$

Now the desired commutators are all in terms of ladder operators whose commutators we know.

$$[Q_1, H] = \left[\frac{1}{2} \left(a_1^{\dagger} a_2 + a_2^{\dagger} a_1\right), \omega \left(a_1^{\dagger} a_1 + a_2^{\dagger} a_2 + 1\right)\right]$$
(28)

$$= \frac{\omega}{2} \left(\left[a_1^{\dagger} a_2, a_1^{\dagger} a_1 \right] + \left[a_1^{\dagger} a_2, a_2^{\dagger} a_2 \right] + \left[a_2^{\dagger} a_1, a_1^{\dagger} a_1 \right] + \left[a_2^{\dagger} a_1, a_2^{\dagger} a_2 \right] \right)$$
(29)

$$= \frac{\omega}{2} \left(a_1^{\dagger} \left[a_1^{\dagger}, a_1 \right] a_2 + a_1^{\dagger} \left[a_2, a_2^{\dagger} \right] a_2 + a_2^{\dagger} \left[a_1, a_1^{\dagger} \right] a_1 + a_2^{\dagger} \left[a_2^{\dagger}, a_2 \right] a_1 \right)$$
(30)

$$= \frac{\omega}{2} \left(-a_1^{\mathsf{T}} a_2 + a_1^{\mathsf{T}} a_2 + a_2^{\mathsf{T}} a_1 - a_2^{\mathsf{T}} a_1 \right)$$
(31)
= 0 (32)

$$= 0 \tag{32}$$

$$[Q_2, H] = \left[\frac{i}{2} \left(a_2^{\dagger} a_1 - a_1^{\dagger} a_2\right), \omega \left(a_1^{\dagger} a_1 + a_2^{\dagger} a_2 + 1\right)\right] = 0$$
(33)

which can be determined from the evaluation of the Q_1 commutator by noting that the terms $a_2^{\dagger}a_1$ and $a_1^{\dagger}a_2$ individually cancel so changing the sign of one of them in the operator does not changes its commutation with the Hamiltonian.

$$[Q_3, H] = \left[\frac{1}{2} \left(a_1^{\dagger} a_1 - a_2^{\dagger} a_2\right), \omega \left(a_1^{\dagger} a_1 + a_2^{\dagger} a_2\right)\right]$$
(34)

$$= \frac{\omega}{2} \left(\left[a_1^{\dagger} a_1, a_1^{\dagger} a_1 \right] - \left[a_2^{\dagger} a_2, a_2^{\dagger} a_2 \right] \right) \tag{35}$$

$$=0$$
(36)

The last property of these charge operators we deduce from the known pauli relation

 $[\sigma_{\alpha}, \sigma_{\beta}] = 2i\epsilon_{\alpha\beta\gamma}\sigma_{\gamma}$

(It may be helpful to think of the combination $\sigma_{ij}a_j$ simply as a mixed vector of a_1 and a_2).

$$[Q_{\alpha}, Q_{\beta}] = \frac{1}{4} \left[a_i^{\dagger} \sigma_{ij}^{\alpha} a_j, a_k^{\dagger} \sigma_{k\ell}^{\beta} a_\ell \right]$$
(37)

$$= \frac{1}{4} \left(a_k^{\dagger} \left[a_i^{\dagger}, \sigma_{k\ell}^{\beta} a_\ell \right] \sigma_{ij}^{\alpha} a_j + a_i^{\dagger} \left[\sigma_{ij}^{\alpha} a_j, a_k^{\dagger} \right] \sigma_{k\ell}^{\beta} a_\ell \right)$$
(38)

$$=\frac{1}{4}\left(-a_{k}^{\dagger}\sigma_{k\ell}^{\beta}\delta_{i\ell}\sigma_{ij}^{\alpha}a_{j}+a_{i}^{\dagger}\sigma_{ij}^{\alpha}\delta_{jk}\sigma_{k\ell}^{\beta}a_{\ell}\right)$$
(39)

$$=\frac{1}{4}\left(-a_{k}^{\dagger}\sigma_{k\ell}^{\beta}\sigma_{\ell j}^{\alpha}a_{j}+a_{k}^{\dagger}\sigma_{k\ell}^{\alpha}\sigma_{\ell j}^{\beta}a_{j}\right)$$
(40)

$$= \frac{1}{4} a_k^{\dagger} \left[\sigma^{\alpha}, \sigma^{\beta} \right]_{kj} a_j \tag{41}$$

$$=\frac{1}{4}a_{k}^{\dagger}2i\epsilon_{\alpha\beta\gamma}\sigma_{kj}^{\gamma}a_{j} \tag{42}$$

$$= i\epsilon_{\alpha\beta\gamma}Q_{\gamma} \tag{43}$$

c. more simply using results of part b.

The commutator with the Hamiltonian can be quickly evaluated by mapping the form of the Hamiltonian into the form of operators O_A or O_B .

$$H = \omega \left(a_i^{\dagger} a_i + 1 \right) = \omega \left(a^{\dagger} \mathbb{I} a + 1 \right)$$
(44)

$$[Q_{\alpha}, H] = \left[Q_{\alpha}, a^{\dagger} \mathbb{I}a\right] = \frac{1}{2}a^{\dagger} \left[\sigma^{\alpha}, \mathbb{I}\right]a = 0$$
(45)

$$[Q_{\alpha}, Q_{\beta}] = \frac{1}{4} a^{\dagger} \left[\sigma^{\alpha}, \sigma^{\beta} \right] a$$
$$= \frac{i\epsilon_{\alpha\beta\gamma}}{2} a^{\dagger} \sigma^{\gamma} a$$
$$= i\epsilon_{\alpha\beta\gamma} Q_{\gamma}$$
(46)

d.

Some more commutators!

$$[Q^{2}, H] = [Q_{\alpha}Q_{\alpha}, H] = Q_{\alpha}[Q_{\alpha}, H] + [Q_{\alpha}, H]Q_{\alpha} = 0$$
(47)

We have already shown that Q_3 commutes with the Hamiltonian.

$$[Q_{\alpha}Q_{\alpha}, Q_3] = Q_{\alpha} [Q_{\alpha}, Q_3] + [Q_{\alpha}, Q_3] Q_{\alpha}$$

$$\tag{48}$$

$$= Q_{\alpha} i \epsilon_{\alpha 3\beta} Q_{\beta} + i \epsilon_{\alpha 3\beta} Q_{\beta} Q_{\alpha} \tag{49}$$

$$= i\epsilon_{\alpha 3\beta} \left\{ Q_{\alpha}, Q_{\beta} \right\} \tag{50}$$

$$= 0$$
 (by symmetry) (51)

Thus, Q^2 and Q_3 share a simultaneous eigenbasis with the energy eigenstates.

e.

Using the operators $N_1 = a_1^{\dagger} a_1$ and $N_2 = a_2^{\dagger} a_2$, we rewrite Q^2 and Q_3 as follows:

$$Q_3 = \frac{1}{2} \left(a_1^{\dagger} a_1 - a_2^{\dagger} a_2 \right) = \frac{1}{2} \left(N_1 - N_2 \right)$$
(52)

$$Q^{2} = Q_{\alpha}Q_{\alpha} = \frac{1}{4} \left(a_{i}^{\dagger}\sigma_{ij}^{\alpha}a_{j}a_{k}^{\dagger}\sigma_{k\ell}^{\alpha}a_{\ell} \right)$$

$$\tag{53}$$

$$=\frac{1}{2}a_{i}^{\dagger}a_{j}a_{k}^{\dagger}a_{\ell}\left(\delta_{i\ell}\delta_{jk}-\frac{1}{2}\delta_{ij}\delta_{k\ell}\right)$$
(54)

$$=\frac{1}{2}\left(a_i^{\dagger}a_k a_k^{\dagger}a_i - \frac{1}{2}a_i^{\dagger}a_i a_k^{\dagger}a_k\right)$$
(55)

$$=\frac{1}{2}\left(a_{i}^{\dagger}a_{k}\left(\left[a_{k}^{\dagger},a_{i}\right]+a_{i}a_{k}^{\dagger}\right)-\frac{1}{2}a_{i}^{\dagger}a_{i}a_{k}^{\dagger}a_{k}\right)$$
(56)

$$=\frac{1}{2}\left(-a_{i}^{\dagger}a_{k}\delta_{ik}+a_{i}^{\dagger}a_{i}a_{k}a_{k}^{\dagger}-\frac{1}{2}a_{i}^{\dagger}a_{i}a_{k}^{\dagger}a_{k}\right)$$
(57)

$$=\frac{1}{2}\left(-a_{k}^{\dagger}a_{k}+a_{i}^{\dagger}a_{i}\left(\delta_{kk}+a_{k}^{\dagger}a_{k}\right)-\frac{1}{2}a_{i}^{\dagger}a_{i}a_{k}^{\dagger}a_{k}\right)\tag{58}$$

$$=\frac{1}{2}\left(a_i^{\dagger}a_i + \frac{1}{2}a_i^{\dagger}a_ia_k^{\dagger}a_k\right) \tag{59}$$

$$=\frac{1}{2}a_i^{\dagger}a_i\left(1+\frac{1}{2}a_k^{\dagger}a_k\right) \tag{60}$$

$$=\frac{1}{4}a_{i}^{\dagger}a_{i}\left(2+a_{k}^{\dagger}a_{k}\right)\tag{61}$$

$$= \frac{1}{4} \left(N_1 + N_2 \right) \left(N_1 + N_2 + 2 \right) \tag{62}$$

f.

We can determine the values of j and m by evaluating matrix elements in either of the simultaneous eigenbases. We may specify eigenstates of Q^2 by either the values of n_1, n_2 or the values of j, m. Regardless of what we choose to call the state, the associated eigenvalues must be equal.

$$Q^2|n_1, n_2\rangle = Q^2|j, m\rangle \tag{63}$$

$$\frac{1}{4}(N_1 + N_2)(N_1 + N_2 + 2)|n_1, n_2\rangle = Q^2|j, m\rangle$$
(64)

$$\frac{n_1 + n_2}{2} \frac{n_1 + n_2 + 2}{2} |n_1, n_2\rangle = j(j+1)|j, m\rangle$$
(65)

$$\Rightarrow j = \frac{(n_1 + n_2)}{2} \tag{66}$$

and for Q_3 ,

$$Q_3|n_1,n_2\rangle = Q_3|j,m\rangle \tag{67}$$

$$\frac{1}{2}(N_1 - N_2)|n_1, n_2\rangle = Q_3|j, m\rangle$$
(68)

$$\frac{1}{2}(n_1 - n_2)|n_1, n_2\rangle = m|j, m\rangle$$
(69)

$$\Rightarrow m = \frac{1}{2}(n_1 - n_2) \tag{70}$$

We can then write the energy E_n in terms of j and m as

$$E_n = \omega(n_1 + n_2 + 1) = \omega(2j + 1) \tag{71}$$

The possible values of j and m:

$$0 \le j \qquad \qquad -j \le m \le j$$

Translated to constraints on n_1 and n_2 , these possible values tell us that (j) neither n_1 nor n_2 are negative and (m) n_1 and n_2 can be separated maximally by their sum, n, as can be seen in the examples explicitly written above.

$\mathbf{g}.$

Now, we have

 $[H, L_z] = 0 \qquad \qquad L_z = (x_1 p_2 - x_2 p_1)$

There are two paths forward: 1.) use the expressions of x and p in terms of ladder operators to identify the structure of L_z with those of the Qs or 2.) find the matrix **X** satisfying the following relation:

$$\frac{\omega}{2}\left(\left(x_1 - \frac{i}{\omega}p_1\right) \quad \left(x_2 - \frac{i}{\omega}p_2\right)\right) \mathbf{X} \begin{pmatrix} \left(x_1 + \frac{i}{\omega}p_1\right) \\ \left(x_2 + \frac{i}{\omega}p_2\right) \end{pmatrix} = x_1 p_2 - x_2 p_1$$

Clearly, diagonal elements of \mathbf{X} will be 0. The off-diagonal elements must satisfy

$$x_1p_2 - x_2p_1 = \frac{\omega}{2} \left(\left(x_1 - \frac{i}{\omega} p_1 \right) \mathbf{X}_{12} \left(x_2 + \frac{i}{\omega} p_2 \right) + \left(x_2 - \frac{i}{\omega} p_2 \right) \mathbf{X}_{21} \left(x_1 + \frac{i}{\omega} p_1 \right) \right)$$
(72)

$$= \frac{\omega}{2} \left(\mathbf{X}_{12} \left(x_1 x_2 + \frac{1}{\omega^2} p_1 p_2 + \frac{i}{\omega} x_1 p_2 - \frac{i}{\omega} p_1 x_2 \right) + \mathbf{X}_{21} \left(x_1 x_2 + \frac{1}{\omega^2} p_1 p_2 + \frac{i}{\omega} x_2 p_1 - \frac{i}{\omega} x_1 p_2 \right) \right)$$
(73)

If we next set $\mathbf{X}_{12} = -\mathbf{X}_{21}$

$$x_1 p_2 - x_2 p_1 = \frac{\omega}{2} \mathbf{X}_{12} \frac{i}{\omega} \left(x_1 p_2 - p_1 x_2 - x_2 p_1 + x_1 p_2 \right)$$
(74)

$$= i\mathbf{X}_{12} \left(x_1 p_2 - x_2 p_1 \right) \mathbf{X}_{12} = -i \tag{75}$$

Thus, ${\bf X}$ is the y-pauli matrix

$$\mathbf{X} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \tag{76}$$

so that $L_z = a_i^{\dagger} \sigma_{ij}^2 a_j = 2Q_2$. The vanishing commutator $[L_z, H]$ tell us that the two operators may share a simultaneous eigenbasis so that the energy eigenstates $|n\rangle$ are eigenstates of L_z . However, the eigenstates $|n_1, n_2\rangle$ are not eigenstates of L_z as can be seen by simply acting Q_2 on the state $|n_1, n_2\rangle$. The $|j, m\rangle$ eigenstates are not eigenstates of L_z as these are eigenstates of Q_3 and $[Q_3, Q_2] \neq 0$. The eigenvalues of L_z in the n^{th} energy level may be related to those of Q_3 . As Q_3 and Q_2 are rotated versions of the same projection operator, their range of eigenvalues will be the same. Thus, we can expect eigenvalues of $L_z = 2Q_2$ to span between $\pm 2j$ or between $\pm n$.

Srednicki 22.1

This problem asks us to show

$$[\varphi_a, Q] = i\delta\varphi_a \tag{77}$$

where Q is the Noether charge associated with the Noether current:

$$j^{\mu}(x) \equiv \frac{\partial \mathcal{L}(x)}{\partial \left(\partial_{\mu}\varphi_{a}(x)\right)} \delta\varphi_{a}(x) \tag{78}$$

$$[\varphi_a(x), Q] = \int \mathrm{d}^3 x' \left[\varphi_a(x), \frac{\partial \mathcal{L}(x')}{\partial (\partial_0 \varphi_b(x'))} \delta \varphi_b(x') \right]$$
(79)

$$= \int d^3x' \left[\varphi_a(\mathbf{x}, t), \Pi_b(\mathbf{x}', t) \delta \varphi_b(x) \right]$$
(80)

$$= \int \mathrm{d}^3 x' \left[\varphi_a(\mathbf{x}, t), \Pi_b(\mathbf{x}', t)\right] \delta\varphi_b(x') \tag{81}$$

$$= \int \mathrm{d}^3 x' i \delta^3(\mathbf{x} - \mathbf{x}') \delta_{ab} \delta \varphi_b(x') \tag{82}$$

$$=i\delta\varphi_a(x)\tag{83}$$

where I used the definition of the conjugate momentum to replace half of the 0th component expression of the Noether current and took the assumption that perturbations of the field are time independent to be justification for assuming $\delta \varphi_b(x')$ commutes with $\varphi_a(x)$ and subsequent commutators are equal-time (though the charge is explicitly conserved, so the time at which Q is evaluated should be inconsequential).

An alternate approach is to expand the charge and field down to the level of creation and annihilation operators using Eq.(22.18-9) and the commutators as evaluated in HW1.