
QFT 570 Homework 5

heavy-φ theory

The Lagrangian for the following contains kinetic and mass terms for two types of fields, ϕ and χ, with a
3-point ϕ interaction and a 2-1 χ-ϕ interaction.
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Figure 1: Tree-level diagrams contributing to χχ → χχ scattering. The solid lines represent external χs
while the dashed lines represent internal ϕs.

There are three diagrams contributing to χχ scattering at tree level. They are analogous to the s, t, and u,
channel diagrams we would see in scalar χ3 but here contain internal ϕs. The amplitude for such scattering
may be built similarly by reading the feynman rules from the Lagrangian as:
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where I have set the lowest-order value of Zh equal to unity and have used the usual definitions of the
mandelstam variables for the mostly-plus metric
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)2
In the center of mass frame, ~k1 = −~k2 and ~k′1 = −~k′2.

b.

Here, we expand the above amplitude to second order in the external χ momentum to focus on low-energy
interactions of χs. Ignoring the iεs for the moment:
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= ih2
1

m2

[
3 +

4M2

m2
+O

(
k4
)]

(6)

where I have used the condition s + t + u = 4M2. As we intend to be in the limit M � m, the resulting
expansion in M

m is expected.

c.

The proposed effective theory retains the kinetic and mass terms for only the χ field and interaction terms
∼ χ4.
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The tree level scattering in the effective theory has contributions from diagrams with each 4-point vertex.
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where the 2-derivative vertex has been evaluated with all momenta incoming/outgoing so that the negative
signs associated with the momentum orientations cancel and we are left only with the (−i)2 minus sign in
momentum space (schematically, ∂∂ → −pi · pj).

d.

By comparing the results from the two theories at a renormalization scale of µ = m, we will find the matching
conditions on the effective coupling constants a, b, and c.

a = −3h2

b = −4h2

c = 0

e.

This operator interpreted in momentum space gives a multiplicative factor of −k2 on the 4-χ vertex where
k is the 4-momentum of one of the external χs. Because our external legs are placed on shell, this factor of
k2 = −M2 making this term redundant in light of the included b term.

2D SHO
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First, we need to reinsert the factors of ω in the ladder operators:
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now, the 2-dimensional Hamiltonian in terms of the number operator is indeed the expected Hamiltonian in
x and p.
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These ladder operators still satisfy

[ai, aj ] =
[
a†i , a

†
j

]
= 0

[
ai, a

†
j

]
= δij (13)

a.

Degeneracy of the nth energy level occurs when multiple n1 and n2 occupations result in the same value of
n1 + n2 = n. For example, the level n = 2 has degeneracies from |n1, n2〉 states: |2, 0〉, |1, 1〉, and |0, 2〉. For
any particular value of n, once n1 is chosen, n2 is fixed. For each value of n, there are n+ 1 possible values
of n1 that satisfy the requirement of integer positivity for both n1 and n2. This means the degeneracy for
the energy state En is n+ 1. Examples for a sanity check:

n = 0 E = 1ω |0, 0〉 (14)

n = 1 E = 2ω |1, 0〉 |0, 1〉 (15)

n = 2 E = 3ω |2, 0〉 |1, 1〉 |0, 2〉 (16)

n = 3 E = 4ω |3, 0〉 |2, 1〉 |1, 2〉 |0, 3〉 (17)

n = 4 E = 5ω |4, 0〉 |3, 1〉 |2, 2〉 |1, 3〉 |0, 4〉 (18)

b.

If David defines the operators OA = a†Aa and OB = a†Ba, then their commutator may be evaluated as

[OA, OB] =
[
a†iAijaj , a

†
kBk`a`

]
(19)

= a†i
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†
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= a†iAijδjkBk`a` − a
†
kBk`δi`Aijaj (21)

= a†iAikBk`a` − a
†
kBkiAijaj (22)

= a†i [A,B]i` a` (23)

c.

Show that the operators Qα are associated with a conserved vector-like quantity.
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2
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†
2a2
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Now the desired commutators are all in terms of ladder operators whose commutators we know.
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1

2
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)
, ω
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2
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]
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ω

2
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= 0 (32)
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[
i

2
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†
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)
, ω
(
a†1a1 + a†2a2 + 1

)]
= 0 (33)

which can be determined from the evaluation of the Q1 commutator by noting that the terms a†2a1 and a†1a2
individually cancel so changing the sign of one of them in the operator does not changes its commutation
with the Hamiltonian.

[Q3, H] =

[
1

2
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†
2a2

)
, ω
(
a†1a1 + a†2a2

)]
(34)

=
ω

2
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†
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]
−
[
a†2a2, a

†
2a2

])
(35)

= 0 (36)

The last property of these charge operators we deduce from the known pauli relation

[σα, σβ] = 2iεαβγσγ

(It may be helpful to think of the combination σijaj simply as a mixed vector of a1 and a2).
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1

4
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α
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†
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β
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]
(37)

=
1

4

(
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†
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α
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=
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β
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β
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=
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=
1

4
a†k2iεαβγσ

γ
kjaj (42)

= iεαβγQγ (43)

c. more simply using results of part b.

The commutator with the Hamiltonian can be quickly evaluated by mapping the form of the Hamiltonian
into the form of operators OA or OB.

H = ω
(
a†iai + 1

)
= ω

(
a†Ia+ 1

)
(44)
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[Qα, H] =
[
Qα, a

†Ia
]

=
1

2
a† [σα, I] a = 0 (45)

[Qα, Qβ] =
1

4
a†
[
σα, σβ

]
a

=
iεαβγ

2
a†σγa

= iεαβγQγ (46)

d.

Some more commutators! [
Q2, H

]
= [QαQα, H] = Qα [Qα, H] + [Qα, H]Qα = 0 (47)

We have already shown that Q3 commutes with the Hamiltonian.

[QαQα, Q3] = Qα [Qα, Q3] + [Qα, Q3]Qα (48)

= Qαiεα3βQβ + iεα3βQβQα (49)

= iεα3β {Qα, Qβ} (50)

= 0 (by symmetry) (51)

Thus, Q2 and Q3 share a simultaneous eigenbasis with the energy eigenstates.

e.

Using the operators N1 = a†1a1 and N2 = a†2a2, we rewrite Q2 and Q3 as follows:
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)
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Q2 = QαQα =
1

4

(
a†iσ
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(53)

=
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)
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=
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2

(
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1
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†
kak
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(55)

=
1

2

(
a†iak

([
a†k, ai

]
+ aia

†
k

)
− 1
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a†iaia
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(56)

=
1

2

(
−a†iakδik + a†iaiaka

†
k −

1

2
a†iaia

†
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)
(57)

=
1
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(
−a†kak + a†iai

(
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− 1
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(58)

=
1
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(
a†iai +
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=
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=
1

4
a†iai

(
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=
1

4
(N1 +N2) (N1 +N2 + 2) (62)

f.

We can determine the values of j and m by evaluating matrix elements in either of the simultaneous
eigenbases. We may specify eigenstates of Q2 by either the values of n1, n2 or the values of j,m. Regardless
of what we choose to call the state, the associated eigenvalues must be equal.

Q2|n1, n2〉 = Q2|j,m〉 (63)

1

4
(N1 +N2)(N1 +N2 + 2)|n1, n2〉 = Q2|j,m〉 (64)

n1 + n2
2

n1 + n2 + 2

2
|n1, n2〉 = j(j + 1)|j,m〉 (65)

⇒ j =
(n1 + n2)

2
(66)

and for Q3,

Q3|n1, n2〉 = Q3|j,m〉 (67)

1

2
(N1 −N2) |n1, n2〉 = Q3|j,m〉 (68)

1

2
(n1 − n2) |n1, n2〉 = m|j,m〉 (69)

⇒ m =
1

2
(n1 − n2) (70)

We can then write the energy En in terms of j and m as

En = ω(n1 + n2 + 1) = ω(2j + 1) (71)

The possible values of j and m:
0 ≤ j − j ≤ m ≤ j

Translated to constraints on n1 and n2, these possible values tell us that (j) neither n1 nor n2 are negative
and (m) n1 and n2 can be separated maximally by their sum, n, as can be seen in the examples explicitly
written above.

g.

Now, we have
[H,Lz] = 0 Lz = (x1p2 − x2p1)

There are two paths forward: 1.) use the expressions of x and p in terms of ladder operators to identify the
structure of Lz with those of the Qs or 2.) find the matrix X satisfying the following relation:

ω

2

((
x1 − i

ωp1
) (

x2 − i
ωp2
))

X

((
x1 + i

ωp1
)(

x2 + i
ωp2
)) = x1p2 − x2p1

Clearly, diagonal elements of X will be 0. The off-diagonal elements must satisfy

x1p2 − x2p1 =
ω

2

((
x1 −

i

ω
p1

)
X12

(
x2 +

i

ω
p2

)
+

(
x2 −

i

ω
p2

)
X21

(
x1 +

i

ω
p1

))
(72)

=
ω

2

(
X12

(
x1x2 +

1

ω2
p1p2 +

i

ω
x1p2 −

i

ω
p1x2

)
+ X21

(
x1x2 +

1

ω2
p1p2 +

i

ω
x2p1 −

i

ω
x1p2

))
(73)
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If we next set X12 = −X21

x1p2 − x2p1 =
ω

2
X12

i

ω
(x1p2 − p1x2 − x2p1 + x1p2) (74)

= iX12 (x1p2 − x2p1)X12 = −i (75)

Thus, X is the y-pauli matrix

X =

(
0 −i
i 0

)
(76)

so that Lz = a†iσ
2
ijaj = 2Q2. The vanishing commutator [Lz, H] tell us that the two operators may share a

simultaneous eigenbasis so that the energy eigenstates |n〉 are eigenstates of Lz. However, the eigenstates
|n1, n2〉 are not eigenstates of Lz as can be seen by simply acting Q2 on the state |n1, n2〉. The |j,m〉
eigenstates are not eigenstates of Lz as these are eigenstates of Q3 and [Q3, Q2] 6= 0. The eigenvalues of
Lz in the nth energy level may be related to those of Q3. As Q3 and Q2 are rotated versions of the same
projection operator, their range of eigenvalues will be the same. Thus, we can expect eigenvalues of Lz = 2Q2

to span between ±2j or between ±n.

Srednicki 22.1

This problem asks us to show
[ϕa, Q] = iδϕa (77)

where Q is the Noether charge associated with the Noether current:

jµ(x) ≡ ∂L(x)

∂ (∂µϕa(x))
δϕa(x) (78)

[ϕa(x), Q] =

∫
d3x′

[
ϕa(x),

∂L(x′)

∂ (∂0ϕb(x′))
δϕb(x

′)

]
(79)

=

∫
d3x′

[
ϕa(x, t),Πb(x

′, t)δϕb(x)
]

(80)

=

∫
d3x′

[
ϕa(x, t),Πb(x

′, t)
]
δϕb(x

′) (81)

=

∫
d3x′iδ3(x− x′)δabδϕb(x

′) (82)

= iδϕa(x) (83)

where I used the definition of the conjugate momentum to replace half of the 0th component expression of
the Noether current and took the assumption that perturbations of the field are time independent to be
justification for assuming δϕb(x

′) commutes with ϕa(x) and subsequent commutators are equal-time (though
the charge is explicitly conserved, so the time at which Q is evaluated should be inconsequential).

An alternate approach is to expand the charge and field down to the level of creation and annihilation
operators using Eq.(22.18-9) and the commutators as evaluated in HW1.
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