
QFT 570 Homework 4

Srednicki 11.2: Compton Scattering e−γ → e−γ

a.

Mandelstam variables s and u in terms of the initial and final photon energies ω and ω′:

s = − (k1 + k2)2 u = −
(
k1 − k′2

)2
in terms of electron/photon labels:

s = − (ke + kγ)2 u = −
(
ke − k′γ

)2
= −

(
kγ − k′e

)2
The initial four vectors in the fixed target frame:

ke =
(
me,~0

)
kγ = (ω, ~pγ)

s = − (ke + kγ)2 (1)

= −k2
e − k2

γ − 2ke · kγ (2)

= m2
e + 0 + 2meω (3)

= me(me + 2ω) (4)

u = −
(
ke − k′γ

)2
(5)

= −k2
e −

(
k′γ
)2

+ 2ke · k′γ (6)

= m2
e + 0− 2meω

′ (7)

= me(me − 2ω′) (8)

b.

The scattering angle θFT between the initial and final photon 3-momenta may be encountered through the
Mandelstam t. Having already calculated s and u, we get t through the constraint

s+ t+ u =
∑
i

m2
i = 2m2

e

t = 2m2
e − s− u (9)

= 2m2
e −me (me + 2ω)−me(me − 2ω′) (10)

= 2me(ω
′ − ω) = −

(
kγ − k′γ

)2
(11)

= 2kγ · k′γ (12)

= −2ωω′ + 2|~kγ ||~k′γ | cos θFT (13)

= −2ωω′ + 2ωω′ cos θFT (14)

cos θFT =
me(ω

′ − ω)

ωω′
+ 1 ⇒ θFT = arccos

[
1 +

me(ω
′ − ω)

ωω′

]
(15)



c.

We have two options: 1.) Recall from Eq. 11.34 the expression of the differential scattering cross section
for an arbitrary frame and specify to the fixed-target frame or 2.) go back to Eq. 11.22 and recalculate
dLIPS2(ke + kγ). I choose to do the second where Eq. 11.22 with the substitution of Eq. 11.9 is

dσ =
1

4meω
|T |2dLIPS2(ke + kγ) (16)

we need to calculate dLIPS2 and simplify |T |2. The former sounds more fun so I start there:

dLIPS2(kekγ) = (2π)4δ4(kγ + ke − k′γ − k′e)
d3k′e

(2π)32E′e

d3k′γ
(2π)32ω′

(17)

=
1

4(2π)2E′eω
′ δ(me + ω − ω′ − E′e)δ3(~kγ − ~k′γ − ~k′e)d3k′ed

3k′γ (18)

=
1

16π2

1

E′e + ω′ − ω cos θFT
ω′dΩFT (19)

=
1

16π2

ω′dΩFT

m+ ω(1− cosθFT )
(20)

=
1

16π2

ω′dΩFT

m+ ω
(
me(ω−ω′)

ωω′

) (21)

=
1

16π2

ω′2dΩFT

mω
(22)

where doing the integral over d3k′e results in the replacement ~k′e = ~kγ − ~k′γ . Thus, the radial integral over
the energy delta function could be implemented as

∫
δ(f(x)) =

∑
0′s |f ′(x0)|−1(

∂

∂|k′γ |
=

∂

∂ω′

)(
E′e + ω′ −

√
s
)

=
∂E′e
∂ω′

+
∂ω′

∂ω′
(23)

=
ω′ − ω cos θFT

E′e
+ 1 (24)

=
E′e + ω′ − ω cos θFT

E′e
(25)

We now simplify the amplitude given to us from a future calculation. For the first step of plugging in
mandelstam expressions and simplification, I politely ask mathematica to handle the algebra.

|T |2 = 32π2α2

[
m2(ω − ω′)2

ω2ω′2
+

2m(ω′ − ω)

ωω′
+
ω2 + ω′2

ωω′

]
(26)

= 32π2α2

[
ω2 + ω′2

ωω′
− sin2 θFT

]
(27)

= 32π2α2

[
ω

ω′
+
ω′

ω
− sin2 θFT

]
(28)

where, inspired by the sin2 θFT in the Klein-Nishina formula, I have substituted:

− sin2 θFT = cos2 θFT − 1 (29)

=
m2(ω′ − ω)2

ω2ω′2
+

2m(ω′ − ω)

ωω′
(30)
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Compiling all the pieces as outlined in Eq. (16),

dσ

dΩFT
=

1

4meω

1

16π2

ω′2

mω
32π2α2

[
ω

ω′
+
ω′

ω
− sin2 θFT

]
(31)

=
α2

2m2
e

ω′2

ω2

[
ω

ω′
+
ω′

ω
− sin2 θFT

]
(32)

2. Renormalization of φ4

The perturbatively renormalized Lagrangian of φ4 theory may be written as

L = −1

2
Zφ (∂φ)2 − 1

2
Zmm

2φ2 − 1

4!
λZλµ̃

εφ4 (33)

As usual, this lagrangian may be split into bare and counterterm parts:

L0 = −1

2
(∂φ)2 − 1

2
m2φ2 − 1

4!
λφ4 (34)

Lct = −1

2
(Zφ − 1) (∂φ)2 − 1

2
(Zm − 1)m2φ2 − 1

4!
(Zλ − 1)λφ4 (35)

= −1

2
δZ (∂φ)2 − 1

2
δm2φ2 − 1

4!
δλφ4 (36)

a.

Here, we draw the divergent 1-loop diagrams of φ4 theory. Through dimensional analysis and the structure
of diagrams, it can be argued that the superficial degree of divergence of any diagram in φ4 theory in d = 4
dimensions can be summarized only by the number of external legs:

D = 4− E

In order for a diagram to be convergent, the value of D calculated for it and all of its possible subdiagrams
must be greater than 0. Here, only diagrams with two and four external legs are divergent (quadratically
and logarithmically, respectively). The divergence of the tadpole diagram will be removed by a mass

Figure 1: Divergent 1-loop diagrams in φ4.

counterterm while the divergence of the fish diagram will be removed with a counterterm for the 4-pt vertex.
Equivalently, this means that the former will contribute to Zm while the latter will contribute to Zλ.

Neither of the above 1-loop diagrams contribute to Zφ because they have no dependence on external mo-
menta. When momentum conservation prevents external momentum from flowing in a loop (such as the
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Figure 2: Divergent 2-loop diagram in φ4.

case of the tadpole diagram), the diagram becomes independent of derivatives of the field and thus does
not contribute to wavefunction renormalization. The fish diagram is logarithmically divergent and is thus
dimensionally not able to contribute to wavefunction renormalization. In order to find a contribution to Zφ,

we need a divergent piece to elicit a counterterm with momentum dependence ∼ p2

ε . It is reasonable that
such a term may come in at two loops with three internal propagators where the diagram schematically

resembles
∫ d8p

(2π)8
1
p6

and contains external momentum dependence within the loops.

b.

First, consider the evaluation of the tadpole. When dimensionally regulated with ε = 4− d,

λµ4−d 1

2

∫
dd`

(2π)d
1

`2 +m2
= − iλ

(4π)2
Γ
(
−1 +

ε

2

)
m2

(
4πµ2

m2

) ε
2

(37)

=
iλ

2(4π)2

(
2

ε
− γ + 1 +O(ε)

)
m2

(
1 +

ε

2
ln

(
4πµ2

m2
+

)
· · ·
)

(38)

= λ
im2

16π2

1

ε
+
iλm2

16π2

(
−γ + 1 + ln(4π) + ln

(
µ2

m2

)
+ ·
)

(39)

in modified minimal subtraction MS, the counterterm will remove both the divergent piece and the standard
constants of ln(4π) and γ. This will make a new 2-pt vertex with the amplitude contribution:

λ
im2

16π2

1

ε
+
iλm2

32π2
(−γ + ln(4π)) =

to then include this new diagrammatic contribution, we introduce a mass counterterm of the form

δm2 =
λm2

16π2ε
+
λm2

32π2
(−γ + ln(4π)) = (Zm − 1)m2 (40)

The fish diagram scales logarithmically and contributes to the renormalization of the coupling λ.

λ2µε
1

2

∫
dd`

(2π)d
1

`2 +m2

1

(`+ k1 + k2)2 +m2

k1+k2=0−→ λ2µε
1

2

∫
dd`

(2π)d
1

(`2 +m2)2
(41)

= λ2µε
i

2(4π)
d
2

Γ

(
2− d

2

)(
1

m2

)2− d
2

(42)

=
iλ2

2(4π)2

(
2

ε
− γ +O(ε)

)(
1 +

ε

2
ln

(
4πµ2

m2

)
+ · · ·

)
(43)

=
iλ2

16π2

1

ε
+

iλ2

32π2
(−γ + ln(4π)) +

iλ2

32π2
ln

(
µ2

m2

)
+O(ε) (44)
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In the first line, I take only the contribution at zero external momentum as this is the location of the
momentum-independent divergence (this way I get to avoid feynman parameters etc.).

δλ =
3λ2

16π2

1

ε
+

3λ2

32π2
(−γ + ln(4π)) (45)

where the factor of 3 comes from the degenerate calculations that would be done also for the divergences of
the t and u channel diagrams.

c.

There are many ways to determine β functions. Many rely on enforcing that physical quantities (and the bare
parameters expected to express them) are independent of the renormalization scale. Mathematically, this
means that any shift experienced when rescaling µ must be compensated by µ dependence of the coupling
constant and field strength (

µ
∂

∂µ
+ β(λ)

∂

∂λ
+ nγ(λ)

)
G(n) = 0 (46)

For example, we could enforce that the 2-point Green’s function or propagator be independent. Because
the propagator receives no corrections to O(λ) as argued above, the first two differentials must vanish. To
satisfy renormalization scale invariance, the amomalous dimension γ must also vanish.

γ(λ) = 0 +O(λ2)

To calculate the β function of the coupling, we may assert the same equation for the 4-point green’s function.
We have seen that this is a sum of the ”x” diagram, the fish diagram, and the associated counterterm. With a
vanishing anomalous dimension, we set the variation with respect to µ (multiplied by µ) equal to the variation
with respect to λ (multiplied by the β function). The fish diagram is the only source of µ dependence. The
latter simply brings down a power of 2 and we are left with

β(λ) =
3λ2

32π2
µ
∂

∂µ
ln
(
µ2
)

(47)

=
3λ2

16π2
+O(λ3) (48)

d.

By separating variables and removing a constant through the definition of a reference scale (or plugging into
mathematica, I suppose), the generic solution to the above beta function may be found.

λ(µ) =
1

1
λ̄
− 3

16π2 ln µ
µ̄

(49)

Then specifying the reference scale to that of the problem statement,

λ(µ) =
1

1− 3
16π2 lnµ

(50)

The figure below plots the scaling of this coupling and emphasizes the presence of a ”Landau pole”—a
divergence of the coupling at a finite energy scale beyond which the theory cannot pass. The name comes
from the famous pole in the β-function of QED. In the far IR, we see that λ slowly makes its way to to 0+.
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3. Renormalization Group

The given β function tells us how the coupling will scale with the (log of the) renormalization scale.

β(g) =
∂g

∂ lnµ
= −c1g + c2g

3 c1, c2 > 0 (51)

a.

Before plotting in figure 3, I choose to scale out c1 because I expect the ratio of coefficients to be the
qualitatively important quantity.

β(g) =
∂g

∂ lnµ
= c1

(
−g +

c2

c1
g3

)
(52)

Implications of β function sign1:

• For β(g) > 0, ∂g
∂ lnµ > 0 so that a decrease in µ results in a decrease in the coupling g.

• For β(g) < 0, ∂g
∂ lnµ > 0 so that a decrease in µ results in an increase in the coupling g

• For β(g) = 0, the derivative is zero and the coupling g does not scale with the renormalization scale µ.

b.

The central zero of the β function is the “Gaussian” or “trivial” fixed point where the coupling itself vanishes
and we are left with a non-interacting theory. The theory explores this possibility by traveling backwards
along the RG flow i.e., in the UV when beginning with a coupling inside the ± c1

c2
fixed points. If traversing

the UV from larger couplings, the coupling is unbounded and grows in strength.

1For the following statements, I assume the renormalization scale µ is a positive number so that the sign of the beta function
implies equivalent properties as the sign of the derivative as β(g) = ∂g

∂ lnµ
= µ ∂g

∂µ
.
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Figure 3: Scaled beta function shows three zeros. These zeros are fixed points of the renormalization group—
locations where the coupling g stops scaling with µ. The outer two are IR-stable fixed points illustrated by
the arrows showing the behaviour of g when µ is decreased in each region.

A low-energy perturbative expansion about either of the IR fixed points would result in a stable expansion,
though one that is unaware of the presence of the other. Theories expanded about different fixed points can
have dramatically different features: confinement, asymptotic freedom, etc. Depending on the role of this
coupling in the Lagrangian, choosing one or the other of these fixed points (i.e., changing the sign of the
coupling) could yield results as dramatic as creating an unbounded potential.

c.

Perturbation theory generically relies on a small expansion parameter. If we begin with a free theory near
the origin and flow to low energies to attempt a perturbative expansion in g, we would find that as we lower
the physical energy scale µ, the coupling grows. This is exactly what the IR arrows indicate in Figure 3.
With a large coupling at low energies, we can no longer expect a perturbative treatment of the theory to be
valid. However, if the IR fixed points were located at perturbatively-small values of g, there would be no

problem i.e., if
√

c1
c2

(potentially divided by relevant mass scales in the problem depending on the units of

g) is much less than 1 so that c2 >> c1.

It is also possible to think of perturbative expansions in the UV. In this case, all our arrows would flip
directions and the free theory would be a stable fixed point around which a perturbative expansion could
be made. This is similar to the story of perturbative QCD with asymptotic freedom: the vanishing of the
coupling in the UV. Generically, reasonable perturbative expansions must be done about RG-stable fixed
points.
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