
QFT 570 Homework 3

Srednicki 10.2

The Feynman rules must instruct the construction of iT by summarizing the results of the LSZ.

When we did problem 3.5, we saw that a complex scalar field could be decomposed into two independent
types of particles creatively named: a and b with charges +1 and -1, respectively. When we worked out
the LSZ for this theory in problem 5.1, we found that ϕ creates a b particle or annihilates an a particles
while ϕ† does the opposite: creates an a and annihilates a b. While we have not done problem 9.3, it simply
instructs us to consider two source types for the complex scalar field: J for the insertion of particles (or the
annihilation of antiparticles) with an arrow pointing away from the source and J† for the annihilation of
particles (or the creation of antiparticles) with an arrow pointing towards the source. Note that these are
charge arrows, not momentum arrows.

J† J

The Lagrangian of problem 9.3:

L = −∂µϕ†∂µϕ−m2ϕ†ϕ− 1

4
Zλλ(ϕ

†ϕ)2 − (Zϕ − 1)∂µϕ†∂µϕ− (Zm − 1)m2ϕ†ϕ (1)

looks to consist now of a four-point vertex (coupling constant λ) along with the mass and kinetic countert-
erms. As we have previously seen in ϕ3 scalar theory, these counterterms create a new vertex where two
lines meet. The difference now is that the two lines meeting in this theory will have oppositely directed
charge arrows:

Modifying Srednicki’s listing of the Feynman rules for scalar fields involves careful consideration of the
content expressed by arrows and recalculation of the associated vertex factors.

1. Draw external lines for each incoming and outgoing particle

2. Leave one end of each external line free (for removed source), and attach the other to a vertex at
which exactly FOUR lines meet (two ϕ and two ϕ†). Include extra internal lines in order to do this if
necessary. Draw all possible diagrams that are topologically inequivalent

3. Alongside each incoming line, draw an arrow pointing towards the vertex. Alongside each outgoing
line, draw an arrow pointing away from the vertex. These are momentum arrows and may be placed
parallel but separate from the line to distinguish them from charge arrows. The momentum arrow
direction may be chosen arbitrarily for internal lines as long as they are treated consistently throughout
the calculation. In terms of our previous decomposition of complex scalar fields into a and b particles,
these momentum arrows will be in the same direction as charge arrows for the a particles and in the
opposite direction as the charge arrows for b particles. This is the key to Srednicki’s suggestion that a
more elegant approach reduces to a single type of arrow: basically momentum arrows that pick up a
minus sign when describing b particles. The placement of these combined arrows may be summarized
as



• incoming a or outgoing b: arrow towards the vertex

• incoming b or outgoing a: arrow away from the vertex

4. Assign four-momenta (b particles with a negative sign), conserving this quantity at each vertex. This
constraint will fix the momenta throughout a tree diagram and leave 1 unfixed momentum for each
loop present in higher-order diagrams. If using the combined arrows, this step requires enforcing that
every vertex has two incoming arrows and two outgoing arrows.

5. Features in the diagram come with the following factors:

• external line: 1

• each vertex: −iλZλ

• internal line with momentum k: −i
k2+m2−iε

6. A diagram with L closed loops will have L internal momenta that are not fixed by the above. Integrate

over each of these momenta `i with measure d4`i
(2π)4

.

7. A loop diagram may have some left-over symmetry factors if there are exchanges of internal propagators
and vertices that leave the diagram unchanged; in this case, difide the value of the diagram by the
symmetry factor associated with exchanges of internal propagators and vertices.

8. Include diagrams with the counterterm vertex that connects two propagators with the same four-
momentum k. As observed above, sprinkling these vertices into a diagram of a complex scalar theory
changes the propagation from that of an a particle to that of a b particle. The vertex factor remains
−i

(
(Zϕ − 1)k2 + (Zm − 1)m2

)
which remains a process of order λ2 as Zi = 1 +O

(
λ2

)
.

9. The values of iT is given by a sum over the values of all these diagrams.

Srednicki 10.3

When a 3-point vertex is present in out complex scalar theory describing the interaction of an a, a b, and a
scalar

L1 = gχϕ†ϕ

the corresponding vertex contains one ingoing and one outgoing arrow on the complex scalar fields

χ

ϕ†

ϕ

Srednicki 11.1

a

We are asked to calculate the total decay rate for an A particle to a pair of B particles governed by an
interaction L1 = gAB2. To begin, we start in the center of mass frame of particle A. Here, A is at rest

2



with a 4-momentum of (mA,0) so that
√
s = mA. Using a symmetry factor of 2 in Eq. 11.49 (for the two

identical external particles), the differential of Eq. 11.48, and the value of dLIPS evaluated for 2-particle
final states in Eq. 11.30, we get the expression:

Γ =
1

2

∫
1

2mA
|T |2 |k′

1|
16π2

√
s
dΩCM (2)

Note that Eq. 11.30 has indeed been evaluated in the CM frame so such combination is valid. From here,
we may use the kinematic relationship of Eq. 11.3 with identical final states,

|k′
1| =

1

2mA

√
m4

A − 4m2
Bm

2
A (3)

and the feynman rules to calculate the value of iT from the single tree-level diagram with one degree of
symmetry for the identical external states.

B1

B2

A +

B2

B1

A (4)

Recall that tree diagrams are generically left with no symmetry factor once sources have been removed
and endpoints have been labeled. This identical particle final state has a symmetry factor in labeling itself
resulting in a vertex factor of 2ig. This makes |T |2 = 4g2. Combining all these pieces,

ΓABB =
1

2

∫
1

2mA
4g2

1

16π2mA

1

2mA

√
m4

A − 4m2
Bm

2
AdΩCM (5)

=
g2

8πmA

√
1− 4

m2
B

m2
A

(6)

As expected by the rotationally invariant initial state, the integrand is constant over the entirety of the solid
angle so that

∫
dΩCM = 4π.

b

For the second part of this problem, the scalar final states have been modified to complex scalar final states.
Your immediate thought should be that this removes a symmetry factor by treating the complex as carrying
two independent, distinguishable fields. The symmetry factor that gets removed is the one associated with
the labeling of the endpoints in the calculation of |T |2 as well as the one from Eq. 11.49. Removing both of
these terms simply changes the above calculation by a factor of 1

2 .

Γϕχ†χ =
g2

16πmϕ

√
1− 4

m2
χ

m2
ϕ

(7)

Srednicki 11.3

In this problem, we calculate the decay rate of the muon given the result of a future calculation of the
spin-symmed amplitude:

|T |2 = 64G2
F (k1 · k′2)(k′1 · k′3) (8)
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with the unfortunate naming convention

k1 = kµ k′1 = kν̄e k′2 = kνµ k′3 = ke−

As all final states are distinguishable, there is no symmetry factor to worry about and the decay rate may
be written as

Γµ =

∫
1

2mµ
64G2

F (k1 · k′2)(k′1 · k′3)dLIPS3(k1) (9)

a

Begin by evaluating dLIPS3(k1) from Eq. 11.23 to break off the integral over the electron’s four-momentum.

dLIPS3(k1) = (2π)4δ4(k1 − k′1 − k′2 − k′3)d̃k
′
1d̃k

′
2d̃k

′
3 (10)

= (2π)4δ4((k1 − k′3)− k′1 − k′2)d̃k
′
1d̃k

′
2d̃k

′
3 (11)

= dLIPS2(k1 − k′3)d̃k
′
3 (12)

now the k′3 dependence may be passed through the dLIPS2 integral as

Γ =
32G2

F

mµ

∫
d̃k′3

∫
(k1)µk

′µ
2 (k′1)νk

′ν
3 dLIPS2(k1 − k′3) (13)

=
32G2

F

mµ

∫
d̃k′3(k1)µ(k

′
3)ν

∫
k′µ2 (k′1)

νdLIPS2(k1 − k′3) (14)

b

If a quantity is to be lorentz invariant, it must be a linear combination of all the lorentz invariants that can
be made out of available variables. Here, we are looking to decompose an object that is a 2-index tensor
under lorentz transformations. The available structures with this transformation property are: gµν and kµkν .
Other tempting choices involving k1 or k2 are not allowed as k1 and k2 are integrated out. Dimensionally,
we need a dimension mass2 object to multiply with gµν . As the pertinent particles (the neutrinos) have
been declared massless for this calculation, the only available structure is k2. Thus, the most general object
we can make with the appropriate lorentz transformation properties (2,0) is∫

k′µ1 k′ν2 dLIPS2(k) = Ak2gµν +Bkµkν (15)

where all dimensionful quantities are explicit, leaving A and B to be numerical constants1.

c

Simply applying the masslessness constraint to the calculation of dLIPS2(k) of Eq. 11.30 (in CM):∫
dLIPS2(k) =

|k′
1|

16π2
√
s
dΩCM (16)

=

∫
s

2
√
s

1

16π2
√
s
dΩCM (17)

1Note that this argument will become pertinent again when working with photon propagators
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=

∫
1

32π2
dΩCM (18)

=
1

32π2
4π =

1

8π
(19)

d

If we first contract Eq. 11.55 with with gµν :∫
(k′1)µk

′µ
2 dLIPS2(k) = 4Ak2 +Bk2 = (4A+B)k2 (20)

where I can think of gµνg
µν as the trace of the product of metric tensors. In four spacetime dimensions, this

quantity is 4. To interpret the dot product, we do a bit of kinematics:

k = k1 − k′3 = k′1 + k′2 k2 = k′21 + k′22 + 2k′1k
′
2
m=0
= 2k′1k

′
2

Then,

k2

2

∫
dLIPS2(k) = (4A+B)k2 (21)

so that

(4A+B) =
1

16π
(22)

We next contract instead with kµkν to get a second independent equation.∫
(k′1 · k)(k′2 · k)dLIPS2(k) = (A+B)k4 (23)

Now a bit more kinematics to evaluate the dot products

(k′1 · (k′1 + k′2))(k
′
2 · (k′1 + k′2)) = (0 + k′1 · k′2)(k′2 · k′1 + 0) = (k′1k

′
2)

2 = k2

k4

4

∫
dLIPS2(k) = (A+B)k4 (24)

so that

(A+B) =
1

32π
(25)

Combining equations (22) and (25),

B =
1

48π
A =

1

96π
(26)

e

To find the differential decay rate with respect to the electron energy, we continue to calculate the total
decay rate and plan to identify

Γ =

∫
dEe

dΓ

dEe

Γ =
32G2

F

m

∫
d̃k′3(k1)µ(k

′
3)ν

[
1

96π
k2gµν +

1

48π
kµkµ

]
(27)

5



=
32G2

F

m

∫
d̃k′3

[
1

96π
k2(k1 · k′3) +

1

48π
(k1 · k)(k′3 · k)

]
(28)

=
32G2

F

m

∫
d̃k′3

[
1

96π
(k1 − k′3)

2(k1 · k′3) +
1

48π
(k1 · (k1 − k′3))(k

′
3 · (k1 − k′3))

]
(29)

=
32G2

F

m

∫
d̃k′3

[
1

96π
(k21 − 2k1 · k′3)(k1 · k′3) +

1

48π
(k21 − k1 · k′3)(k′3 · k1)

]
(30)

=
32G2

F

m

∫
d̃k′3(k1 · k

′
3)

[(
1

96π
+

1

48π

)
k21 −

(
2

96π
+

1

48π

)
k1 · k′3

]
(31)

=
G2

F

mπ

∫
d̃k′3(k1 · k

′
3)

[
k21 −

4

3
k1 · k′3

]
(32)

=
G2

F

π

∫
d̃k′3Ee

[
m2 − 4

3
Eem

]
(33)

=
G2

F

π

∫
d3k′3

(2π)32Ee
Ee

[
m2 − 4

3
Eem

]
(34)

=
G2

F

π424

∫
E2

edEedΩ

[
m2 − 4

3
Eem

]
(35)

=
mG2

F

4π3

∫
dEe

[
E2

em− 4

3
E3

e

]
(36)

where I have used k1 ·k′3 = −Eem as evaluated in the CM frame. Identifying the integrand as the differential
decay rate:

dΓ

dEe
=

mG2
F

4π3

[
E2

em− 4

3
E3

e

]
(37)

A quick kinematics exercise to conserve energy in the scenario that the two neutrinos emerge in one direction
(sharing equal momentum) and the electron in the opposite direction will result in a calculation of the
maximal electron energy,

mµ

2 .

f

Performing the integral is again straightforward

Γ =
mG2

F

4π3

[
1

3
E3

em− 1

3
E4

e

] ∣∣∣m2
0

(38)

=
mG2

F

4π3

[
m4

3 · 23
− m4

3 · 24

]
(39)

=
m5G2

F

192π3
(40)

g

Evaluating with numbers:

GF =

√
192Γπ3

m5
=

√
1926.582∗10−25GeV/s

2.197∗10−6s
π3

0.105665
= 1.164 ∗ 10−5GeV (41)
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h

The energy spectrum of the electron:

P (Ee) ≡ Γ−1 dΓ

dEe
(42)

=
192π3

m5G2
F

mG2
F

4π3

[
E2

em− 4

3
E3

e

]
(43)

=
48

m4

[
E2

em− 4

3
E3

e

]
(44)

=
48

m

[
Ee

m

2

− 4

3

Ee

m

3]
(45)

To change variables in a probability distribution we will need a jacobian to assure the proper scaling of area
elements:

p(X) = p(Y )× |dY
dX

|

The jacobian here will be

|dEe
dEe

m

=
m

thus,

P

(
Ee

m

)
= 48

[
Ee

m

2

− 4

3

Ee

m

3]
(46)

Srednicki 11.4

For this theory of three scalar fields, we see that all three are propagating, massive fields with a single
3-point interaction involving one of each carrying a vertex factor of ig. the only vertices that should appear
in diagrams for perturbative expansions of e.g., correlation functions within this theory are:
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A

B C

Considering only tree-level diagrams severely limits the non-vanishing amplitudes. For an initial state with
two identical particles (AA), the s-channel cannot be made as an AA? vertex is not a valid interaction. The
t- and u-channel diagrams are possible and connect the two vertices. This forces the external particles to
also be the same type such that AA → CC or AA → BB will have a non-zero tree-level scattering amplitude
but

T tree
AA→AA = 0

T tree
AA→AB = 0

T tree
AA→BC = 0

and the diagrams contributing to AA → BB are

T tree
AA→BB = C

BA

BA

+

A

B

B

A

C T tree
AA→BB = g2

(
1

m2
C − t

+
1

m2
C − u

)
(47)

Remaining to be considered are the processes containing an initial state of dissimilar particles. Now, the
s-channel diagram is possible and it is obvious that the particles in the final state must be the same two
types as those in the initial state.

C

A

AB

B

+

A
B

AB

C (48)

T tree
AB→AB = g2

(
1

m2
C − s

+
1

m2
C − t

)
(49)

Finally, it should now be clear that
T tree
AB→AC = 0
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Srednicki eq. 14.27

As usual for these types of evaluations, we will switch to hyper-spherical coordinates. The main content
of the integral is then shifted to the radial integral while the angular integral may be quickly evaluated for
arbitrary dimensions in as (see Peskin and Schroeder pg. 249 for more details)∫

dΩd =
2π

d
2

Γ
(
d
2

) (50)

I will now split the radial integral and do a couple changes of variables with the goal of identifying the beta
function:

β(a, b) =

∫ 1

0
dt ta−1(1− t)b−1 =

Γ(a)Γ(b)

Γ(a+ b)∫
ddq̄

(2π)d
(q̄2)a

(q̄2 +D)b
=

∫
dΩd

(2π)d

∫
dq̄

(q̄2)a+
d
2
−1

(q̄2 +D)b
(51)

=
2π

d
2

(2π)dΓ
(
d
2

) 1
2

∫
d(q̄2)

(q̄2)a+
d
2
−1

(q̄2 +D)b
(52)

=
1

(4π)
d
2Γ

(
d
2

) ∫ 1

0

dx

D

(Dx −D)a+
d
2
−1

(Dx )
b−2

(53)

=
1

(4π)
d
2Γ

(
d
2

) ∫ 1

0

dx

D

Da+ d
2
−1x−a− d

2
+1(1− x)a+

d
2
−1

(Dx )
b−2

(54)

=
1

(4π)
d
2Γ

(
d
2

) ( 1

D

)1−a− d
2
+1+b−2 ∫ 1

0
dx xb−a−2+1− d

2 (1− x)a+
d
2
−1 (55)

=
1

(4π)
d
2Γ

(
d
2

) ( 1

D

)b−a− d
2
∫ 1

0
dx xb−a− d

2
−1(1− x)a+

d
2
−1 (56)

=
1

(4π)
d
2Γ

(
d
2

) ( 1

D

)b−a− d
2

β

(
b− a− d

2
, a+

d

2

)
(57)

=
1

(4π)
d
2Γ

(
d
2

) ( 1

D

)b−a− d
2 Γ

(
b− a− d

2

)
Γ
(
a+ d

2

)
Γ (b)

(58)

where in the second line I have changed variables in the radial integral to q̄2 and in the third line I have
changed variables to x = D

q̄2+D
.

Srednicki 14.3

This problem is very similar to part b of 11.3 above. The goal is to identify lorentz tensors with the
same transformation properties as the quantity of interest and inform a linear combination of them through
contraction.

a

The first equation, regardless of its lorentz structure, must vanish as it is an odd function of q.
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The second equation is a 2-index lorentz tensor and thus must have a gµν tin its decomposition. Earlier,
we also included a term ∼ kµkν but because the q momenta is being integrated, there is no remaining
momentum for the creation of this term. Thus we have a linear combination of only one term∫

ddq qµqνf(q2) = C̄2g
µν (59)

To extract the coefficient, we contract with gµν∫
ddq q2f(q2) = C̄2(d) (60)

where I used the fact that the self-contracted metric tensor, being the trace of its matrix product, is equal
to the spacetime dimension, d. Now identifying the value of C2 as it appears in Eq. 14.53,

C2 =
1

4
(61)

b

Now, there are 3 ways to contract the pair of 2 metric tensors needed to fully contract the 4-index integrand.
One can consider also the four-index levi-cevita, but since the LHS is symmetric under interchange of indices,
the contribution will naturally vanish.∫

ddq qµqνqρqσf(q2) = Agµνgρσ +Bgµρgνσ + Cgµσgνρ (62)

Contracting with the expression gµνgρσ

gµνgρσg
µνgρσ = d2 gµνgρσg

µρgνσ = gνµg
µρgρσg

σν = d

where the latter can be thought of as

Tr



−1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
. . .



−1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
. . .



−1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
. . .



−1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
. . .


 = d

Now, ∫
ddq q4f(q2) = Ad2 +Bd+ Cd = Ad+Bd2 + Cd = Ad+Bd+ Cd2 (63)

implying that all three coefficients, {A,B,C}, must be equal∫
ddq q4f(q2) = X(d2 + 2d) (64)

so that the original expression:∫
ddq qµqνqρqσf(q2) =

∫
ddq q4f(q2)

d2 + 2d
(gµνgρσ + gµρgνσ + gµσgνρ) (65)
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