Problem set #5

- 1. Consider the model in Srednicki 28.3 in d = 6 dimensions.
 - (a) Draw all the tree level diagrams contributing to $\chi\chi \to \chi\chi$ scattering and compute the scattering amplitude in the center of mass frame. Use $k_{1,2}$ for the incoming momenta and $k'_{1,2}$ for the outgoing momenta.
 - (b) Expand your above result to second order in the χ momenta.
 - (c) Assume that the mass of the ϕ is much greater than the mass of the χ : $m \gg M$. At the scale $\mu = m$ we will integrate the ϕ field out of the theory and match onto an effective theory involving only the χ field. We will treat the effective theory in an expansion in M^2/m^2 and k^2/m^2 , where k^2 any Lorentz invariant term second order in the χ momenta. Consider the expansion for χ^4 operators to second order in the expansion:

$$\mathcal{L}_{\rm EFT} = -\frac{1}{2} \left(\partial_{\mu} \chi \partial^{\mu} \chi + M^2 \chi^2 \right) - \frac{a}{m^2} \frac{\chi^4}{4!} - \frac{b M^2}{m^4} \frac{\chi^4}{4!} - \frac{c}{m^4} \frac{(\partial_{\mu} \chi \partial^{\mu} \chi) \chi^2}{4} + \dots$$
(1)

where the ellipsis refers to operators with more derivatives or higher powers of χ , and a, b, c are pure numbers independent of m and M. Since we are only looking at tree level matching, d = 6and the Z factors are all set to one. Compute the tree level $\chi\chi \to \chi\chi$ scattering in this effective theory in the center of mass frame up to order k^2/m^2 .

- (d) Compare your results from the two theories and find the matching conditions for a, b, c.
- (e) Why didn't we need to include a fourth operator of the form $(\partial_{\mu}\partial^{\mu}\chi)\chi^{3}$?
- 2. In this problem, repeated indices are summed. Consider the 2-dimensional simple harmonic oscillator with Hamiltonian

$$H = \frac{1}{2} \left(p_i p_i + \omega^2 x_i x_i \right) = \omega \left(a_i^{\dagger} a_i + 1 \right)$$
⁽²⁾

where the indices i, j run over 1, 2, I have set $\hbar = m = 1$, and the ladder operators have the usual definition

$$a_i = \frac{(x_i + ip_i)}{\sqrt{2}} , \qquad a_i^{\dagger} = \frac{(x_i - ip_i)}{\sqrt{2}} , \qquad (3)$$

and they satisfy

$$[a_i, a_j] = [a_i^{\dagger} a_j^{\dagger}] = 0 , \qquad [a_i, a_j^{\dagger}] = \delta_{ij} .$$
(4)

We know that the number operators $N_1 = a_1^{\dagger}a_1$ and $N_2 = a_2^{\dagger}a_2$ take on non-negative integer values, and that the eigenstates of the H are the states $|n_1, n_2\rangle$ where

$$N_1|n_1, n_2\rangle = n_1|n_1, n_2\rangle , \quad N_2|n_1, n_2\rangle = n_2|n_1, n_2\rangle , \quad H|n_1, n_2\rangle = \hbar\omega(n_1 + n_2 + 1)|n_1, n_2\rangle , \quad (5)$$

with $n_{1,2} = 0, 1, 2, \ldots$ Thus the n^{th} energy level has energy $E_n = \hbar \omega (n+1)$ with $n = (n_1 + n_2) = 0, 1, 2 \ldots$

- (a) Give a formula for degeneracy of the n^{th} energy level of the system in terms of n.
- (b) Show that if I define the operators $O_A = a^{\dagger}Aa$, $O_B = a^{\dagger}Ba$, where A and B are 2 × 2 matrices, then their commutator is given by

$$[O_A, O_B] = a^{\dagger}[A, B]a . \tag{6}$$

(c) Consider the operators

$$Q_{\alpha} = \frac{1}{2} a_i^{\dagger} \sigma_{ij}^{\alpha} a_j , \qquad \alpha = 1, 2, 3 , \qquad (7)$$

where σ^{α} are the Pauli matrices. Show that these operators commute with the Hamiltonian and obey the SU(2) algebra familiar to you from studying angular momentum in quantum mechanics, namely

$$[Q_{\alpha}, H] = 0 , \qquad [Q_{\alpha}, Q_{\beta}] = i\epsilon_{\alpha\beta\gamma}Q_{\gamma} . \tag{8}$$

(d) Show that $Q^2 \equiv Q_{\alpha}Q_{\alpha}$ and Q_3 satisfy

$$[Q^2, H] = [Q_3, H] = [Q^2, Q_3] = 0 , (9)$$

and that therefore eigenstates of the energy can be simultaneous eigenstates of Q^2 and Q_3 .

(e) Express the Q^2 and Q_3 operators in terms of $N_{1,2}$. For Q^2 , use the algebraic relation for Pauli matrices

$$\sigma_{ij}^{\alpha}\sigma_{k\ell}^{\alpha} = 2\left(\delta_{i\ell}\delta_{jk} - \frac{1}{2}\delta_{ij}\delta_{k\ell}\right) . \tag{10}$$

(f) Use the above results to show that the energy eigenstates with energy E_n may be written as $|j, m\rangle$ where

$$Q^{2}|j,m\rangle = j(j+1)|j,m\rangle , \qquad Q_{3}|j,m\rangle = m|j,m\rangle .$$
⁽¹¹⁾

What is E_n in terms of j and m? What possible values can j and m take? Is this consistent with your answer to part (a)?

- (g) The *H* also commutes with the angular momentum operator $L_z = (x_1p_2 x_2p_1)$. Show that L_z can be rewritten as $a_i^{\dagger}X_{ij}a_j$ for some matrix *X* and relate L_z to the Q_{α} . Are the $|n_1, n_2\rangle$ eigenstates of L_z ? Are the $|j, m\rangle$ eigenstates of L_z ? What are all of the eigenvalues of L_z in the n^{th} energy level?
- 3. Srednicki 22.1