Problem set #4

- 1. Srednicki 11.2. Where the problem states to express the answer in terms of ω and ω' , your answer will also depend on the electron mass m.
- 2. Consider the ϕ^4 theory in d = 4 dimensions described in Srednicki problem 28.1.
 - (a) Draw all the divergent 1-loop diagrams in the theory and indicate which ones will contribute to the counterterms Z_m and Z_{λ} . Explain why none of these contribute to Z_{ϕ} , and draw all of the two-loop diagrams contributing to Z_{ϕ} .
 - (b) Compute the Z_m and Z_{λ} counterterms at 1-loop order in the $\overline{\text{MS}}$ scheme. Note that it is easier to compute the counterterms than to compute the full result for these graphs!
 - (c) Use your results and the methods of chapter 28 to compute the 1-loop anomalous dimension and β -function to $O(\lambda^2)$ for the theory.
 - (d) Suppose that at $\mu = 1$ GeV experiments have determined $\lambda(\mu) = 1$. Plot $\lambda(\mu)$ for all μ . What happens in the far UV? In the far IR?
- 3. Suppose you have a theory with the RG equation

$$\frac{\partial g}{\partial \ln \mu} = \beta(g) = -c_1 g + c_2 g^3 \tag{1}$$

where c_1 and c_2 are positive numbers. Assume that you can ignore higher order corrections to this equation.

- (a) Plot $\beta(g)$ versus g for all g. For $\beta > 0$, does g increase or decrease as μ is reduced (refer to the RG equation)? What about when $\beta < 0$ and $\beta = 0$? Indicate your answers by drawing arrows on your curve for how g flows in the IR (smaller μ).
- (b) Describe qualitatively the different behaviors this theory can have.
- (c) In general, why might it be difficult use perturbation theory to find a theory which reliably has a β function like this? Can you think of a condition on c_1 and c_2 that could make this possible?