
Lorentz group for Physics 570 (Fall 2017)

Consider Lorentz transformations, for which the defining representation is 4-dimensional. This is the
group of real matrices Λ which satisfy

ΛαρΛ
β
σηαβ = ηρσ , ηαβ = ηαβ =


−1

1
1

1


αβ

, det Λ = 1 . (1)

The metric is used to raise and lower indices, from which it follows that ηαβ and η β
α are the unit matrix.

With this definition, the inner product between two 4-vectors, vαηαβw
β , is preserved under the Lorentz

transformations v → Λv and w → Λw, where Λ is a real, 4× 4 matrix.
We can write

Λ = eiθµνX
µν

, Xµν = −Xνµ = −i ∂Λ

∂θµν

∣∣∣
θ=0

(2)

where the θµν = −θνµ is an antisymmetric 4 × 4 matrix containing the six real parameters for 3 rotations
and 3 boosts. Since Λ is a real transformation matrix, the six independent Xµν are all imaginary 4 × 4
matrices. Expanding eq. (1) to linear order in the θµν , one finds the Xµν must satisfy

0 = iθµν
[
(Xµν)αρη

β
σ + ηαρ(Xa)βσ

]
ηαβ = iθµν [(Xµν)σρ + (Xµν)ρσ] , (3)

or:

(Xµν)ρσ + (Xµν)σρ = 0. (4)

In other words, with both indices lowered, the Xµν matrices are antisymmetric.
A simple basis for the 4× 4 matrices satisfying eq. (4) (imaginary and antisymmetric in both {µ, ν} and

{α, β}) is

(Xµν)αβ = −i
(
ηµαη

ν
β − η

µ
βη

ν
α

)
(5)

so that the matrices we want with an upper and lower index are

(Xµν)
α
β = −i

(
ηµαηνβ − η

µ
βη

να
)

(6)

This provides our defining representation; we can now compute the commutation relations for these matrices
in eq. (6) and arrive at the abstract algebra for the Lorentz group:

[Xµν , Xρσ] = i (ηµρXνσ − ηνρXµσ − ηµσXνρ + ηνσXµρ) . (7)

It is convenient to identify the three rotations and three boosts, so we define

Ji =
1

2
εijkX

jk , Ki = Xi0 , Λ = ei
~θ· ~J+i~ω· ~K (8)
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analogous to how the Bi and Ei fields are defined in terms of Fµν in electromagnetism. In the representation
eq. (5) this yields

J1 =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 , J2 =


0 0 0 0
0 0 0 i
0 0 0 0
0 −i 0 0

 , J3 =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0



K1 =


0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 −i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 , K3 =


0 0 0 −i
0 0 0 0
0 0 0 0
−i 0 0 0

 ,

(9)

en exponentiated we get the familiar rotation and boost matrices, such as

eiθJ3 =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 , eiωK3 =


coshω 0 0 sinhω

0 1 0 0
0 0 1 0

sinhω 0 0 coshω

 , (10)

where θ is the rotation angle, and ω is the boost rapidity, with γ = coshω, β = tanhω.
With these definitions of Ji and Ki our abstract algebra eq. (7) implies the commutation relations

[Ji, Jj ] = iεijkJk , [Ji,Kj ] = iεijkKk , [Ki,Kj ] = −iεijkJk . (11)

If we can find a d-dimensional matrix representation of this algebra (call the representation “R”), then a
Lorentz transformation will be given by the d-dimensional matrix

DR(~θ, ~ω)µν =
[
ei(

~θ· ~J+~ω· ~K)
]µ
ν
. (12)

The goal is to find all the finite dimensional representations.
This algebra eq. (11) should look reminiscent of SU(2). Next we define six generators ~A and ~B with less

physical meaning but a simpler algebra1:

Ai ≡
1

2
(Ji − iKi) Bi ≡

1

2
(Ji + iKi) (13)

From eq. (11) it follows that ~A and ~B satisfy

[Ai, Aj ] = iεijkAk , [Bi, Bj ] = iεijkBk , [Ai, Bj ] = 0 (14)

...in other words this is the group SU(2) × SU(2). Luckily we know all the irreducible representations of
this group, as they are just labelled by two j quantum numbers:

R = (jA, jB) (15)

a representation with dimension (2jA + 1)(2jB + 1). You should think of where Ai = ai ⊗ 1B where ai is a
nontrivial (2jA+ 1) matrix acting on the mA indices, and 1B is the trivial (2jB + 1) dimensional unit matrix

1The Ai and Bi I define are called Ni and N†
i respectively by Srednicki in Ch. 33. This is misleading, since in general ~A

and ~B ar enot hermitian conjugates of each other; obviously that can only happen when one has a hermitian representation
for the Ki generators, which is manifestly not the case for the defining representation in eq. (9) – or for any finite dimensional
representation. It is the case for the infinite dimensional representation in the Hilbert space, where Lorentz transformations
have to be unitary (they conserve probability) and the generators hermitian.
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acting on the mB indices, and conversely Bi = 1A⊗ bi. The corresponding Lorentz transformation, from eq.
(13) and eq. (12) is given by

D{jA,jB} = ei(
~θ+i~ω)· ~A+i(~θ−i~ω)· ~B (16)

Note the interesting feature that for the finite dimensional, hermitian representations of SU(2) for Ai
and Bi we have

D∗{jA,jB}(
~θ, ~ω) = ei(

~θ−i~ω)·~(−A∗)+i(~θ+i~ω)·~(−B∗) = D{j̄B ,j̄A} = D{jB ,jA} (17)

where I used the facts that

(i) in general, if Xa is a representation R of a Lie algebra, then −X∗a is also a representation, and is called
the conjugate representation (here denoted as R̄);

(ii) the group SU(2) only has real representations, so j and j̄ are the same (up to a similarity transforma-
tion)...for example, for spin 1

2 we have −σ∗i = σ2σiσ2;

(iii) since conjugation flipped the relative sign between θ and ω, the roles of A and B are flipped.

Thus if ψ transforms according to the (jA, jB) representation, ψ∗ is in the (jB , jA) representation.

A related observation which is useful is that for hermitian representations or ~A and ~B, possible to define
for all finite dimensional representations of SU(2),

D†{jA,jB}(
~θ, ~ω) = e−i(

~θ−i~ω)· ~A−i(~θ+i~ω)· ~B = D−1
{jB ,jA}(

~θ, ~ω). (18)

We now know all of the irreducible, finite dimensional representations of the Lorentz group. For example,
assume we have a field ψ transforming as the ( 1

2 , 0) representation. Thus we have ~a = 1
2~σ and ~b = 0 and

DL ≡ D( 1
2 ,0)(

~θ, ~ω) = ei(
~θ+i~ω)·~σ/2 . (19)

A rotation by angle θ3 about the z axis corresponds to the matrix

D( 1
2 ,0)(θ3) = eiθ3σ3/2 =

(
eiθ3/2 0

0 e−iθ3/2

)
. (20)

A boost in the z direction with velocity parameter ω3 corresponds to

D( 1
2 ,0)(ω3) = e−ω3σ3/2 =

(
e−ω3/2 0

0 eω3/2

)
(21)

ẑ rotations multiply the components of ψ by phases (a factor of −1 for a rotation by 2π), while a boost
makes the upper component exponentially large, and the lower component exponentially small.

Similarly, if χ transforms according to the (0, 1
2 ) representation, then χ→ DRχ where

DR ≡ D(0, 12 ) = ei(
~θ−i~ω)·~σ/2 . (22)

Rotations are the same as for ψ, but boosts have ω → −ω.

3


