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I. FERMION PATH INTEGRATION - PHYSICS 570 - FALL 2017

A. The Fermionic Harmonic Oscillator

The prototype for a fermion field is a 2-state system in quantum mechanics, with ground state |0〉 and excited state
|1〉, which in QFT will correspond to a fermion state being unoccupied or occupied respectively. I will refer to this as
the “fermionic harmonic oscillator” because we can write the Hamiltonian as

H = 1
2m
(
b†b− bb†

)
= m

(
b†b− 1

2

)
, (1)

where b and b† are operators satisfying anti-commutation relations

{b, b} =
{
b†, b†

}
= 0 ,

{
b†, b

}
= 1 , (2)

where {A,B} ≡ AB+BA. The normalized eigenstates of H consist of the ground state |0〉 which is annihilated by b:

b|0〉 = 0 , (3)

and the excited state

|1〉 = b†|0〉 , (4)

satisfying

H|0〉 = − 1
2m|0〉 , H|1〉 = + 1

2m|1〉 . (5)

B. Coherent States

It is convenient to introduce the “coherent states”

|ψ〉 = e−ψ̄ψ/2 ( |0〉 − ψ|1〉 ) , 〈ψ̄| = e−ψ̄ψ/2
(
〈0| − 〈1|ψ̄

)
(6)

where the independent Grassmann numbers ψ and ψ̄ which are anti-commuting:

{ψ,ψ} =
{
ψ̄, ψ

}
=
{
ψ̄, ψ̄

}
= 0 . (7)

Note that these are numbers, not Hilbert space operators, but we take them to anti-commute with b and b†. We take
the state |0〉 to be bosonic, commuting with ψ, but then |1〉 = b†|0〉 is fermionic, anti-commuting with ψ. It follows
that we can rewrite the coherent states as

|ψ〉 =
(
1− 1

2 ψ̄ψ
)
|0〉 − ψ|1〉 ,

〈ψ| = 〈0|
(
1− 1

2 ψ̄ψ
)
− 〈1|ψ . (8)

Using the nature of Grassmann numbers, you should be able to show that these states – called coherent states –
obey the following useful properties:

b|ψ〉 = ψ|ψ〉 , (9)

〈ψ̄|b† = 〈ψ̄|ψ̄ (10)

〈ψ̄1|ψ2〉 = e−
1
2 ψ̄1ψ1−

1
2 ψ̄2ψ2+ψ̄1ψ2 , (11)

〈ψ̄|ψ〉 = 1 , (12)

|ψ〉〈ψ| = (1− ψψ)|0〉〈0|+ ψ|0〉〈1|+ ψ|1〉〈0| − ψψ|1〉〈1| . (13)
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C. Completeness and Grassmann integration

What remains to establish is a completeness relation. We define Grassmann integration so that∫
dψ dψ |ψ〉〈ψ| = 1 = |0〉〈0|+ |1〉〈1| . (14)

From eq. (14) we see that integration is therefore defined to look like derivation:∫
dψ̄ dψ = ∂ψ̄∂ψ , (15)

where derivatives with respect to a Grassmann number are themselves Grassmann...in particular, {∂ψ̄, ∂ψ} =

{∂ψ, ψ} = 0. You should check that this counterintuitive definition gives the correct result, that having ∂ψ̄∂ψ act on
the expression in eq. (13) gives the desired result on the left hand side of eq. (14).

Consider an general function

F (ψ) = f0 + ψf1 . (16)

If F is an ordinary number, then f0 is a number and f1 is a Grassmann number that anticommutes with ψ (I will
assume this, but keep in mind that in supersymmetry you will occasionally encounter a Grassmann function F in
which case f0 is Grassmann and f1 is an ordinary number). Note that with f1 being Grassmann, the order makes a
difference: ψf1 = −f1ψ.

Then we have ∫
dψ F (ψ) = f1 , (17)

For a function of both ψ and ψ̄ we have

F (ψ, ψ̄) ≡ f0 + ψf1 + ψ̄f2 + ψ̄ψf3 ,

∫
dψ̄ dψ F (ψ, ψ̄) = −f3 . (18)

where f3 is an ordinary number if F is.

D. Grassmann Path Integration

Now suppose you want to construct

Z = 〈ψf |e−iH(tf−ti)|ψi〉 , ψi ≡ ψ(ti) , ψf ≡ ψ(tf ) (19)

as a path integral. We break of the time interval T = (tf − ti) into a lot of small pieces T = Ndt with

ψ(ti + ndt) ≡ ψn , ψ0 = ψ(ti) , ψN = ψ(tf ) , (20)

and similarly for ψ̄, and then we use the completeness relation for coherent states in eq. (14) to write

Z =

∫
dψ̄1dψ1 · · · dψ̄N−1dψn−1 〈ψ̄N |e−iH dt|ψN−1〉〈ψ̄N−1|e−iHdt|ψN−2〉 · · · 〈ψ̄1|e−iH dt|ψ0〉 (21)

A typical term in the integrand is of the form (dropping the zero-point energy)

〈ψ̄n|e−iH dt|ψn−1〉 = 〈ψ̄n|e−imb
†b dt|ψn−1〉

= 〈ψ̄n|1− imb†b dt+O(dt2)|ψn−1〉

=
(
1− imψ̄nψn−1 dt+O(dt2)

)
〈ψ̄n|ψn−1〉

= e

(
−imψ̄nψn−1dt−

1
2 ψ̄nψn−

1
2 ψ̄n−1ψn−1+ψ̄nψn−1

)
, (22)



3

where in the last line follows from eq. (11).
Replacing the ψn by a continuous function of t the above expression may be written as

〈ψ̄n|e−iH dt|ψn−1〉 = eidtψ̄(t)( i
2

←→
∂t−m)ψ(t)+O(dt2) (23)

Taking the product of all the terms in eq. (21) and taking the limit dt→ 0 yields the path integral

Z =

∫
Dψ̄Dψ eiS , S =

∫
dt ψ̄( i2

←→
∂ t −m)ψ , (24)

with boundary conditions ψ(ti) = ψi, ψ(tf ) = ψf . If we take ψi = ψf = 0 we can integrate by parts in S and obtain

S =

∫
dt ψ̄(i∂t −m)ψ . (25)

Note that we can define correlation functions of the form

〈T (ψ(t1) · · ·ψ(tk)ψ̄(tk+1) · · · ψ̄(tn)〉 =
1

Z

∫
Dψ̄Dψ eiSψ(t1) · · ·ψ(tk)ψ̄(tk+1) · · · ψ̄(tn) . (26)

The fact that this gives the time ordered correlation function is easy to see by going back to the discrete variables
ψ1...ψN .

E. Generalization to Dirac fermions in four dimensions

The generalization of the fermionic path integral above to free Dirac fermions four dimensions is straight forward:
We just replace the Grassmann numbers ψ and ψ̄ by Grassmann 4-component spinors, and replace S by the Dirac
action,

Z =

∫
Dψ̄Dψ eiSD , SD =

∫
d4x ψ̄(i/∂ −m)ψ . (27)

F. Performing Grassmann Path Integrals

Suppose we have Grassmann field ψ and ψ̄ and the Grassmann integral

Z =

∫
Dψ̄Dψ e−

∫
ψ̄Dψ (28)

where CD is some hermitian differential operator with orthonormal eigenstates χn and eigenvalues λn:

Dχn = λnχn . (29)

Then we can expand ψ and ψ̄ in terms of these eigenstates:

ψ(x) =
∑
n

cnχn(x) , ψ̄(x) =
∑
n

c̄nχ
†
n(x) , (30)

where the χn(x) are ordinary functions, while the cn and c̄n are independent Grassmann numbers. Then the path
integral becomes

Z =

∫ ∏
n

dc̄n dcn e
−
∑

m,n λnc̄mcn
∫
d4xχ†m(x)χn(x)

=

∫ ∏
n

dc̄n dcn e
−
∑

n λnc̄ncn

=

∫ ∏
n

dc̄n dcn
∏
n

(1− λnc̄ncn)

=
∏
n

λn . (31)
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But this is nothing other than the determinant of the operator D, so we have

Z =

∫
Dψ̄Dψ e−

∫
ψ̄Dψ = detD . (32)

Note the difference between this and gaussian path integration over bosonic variables φ and φ∗:∫
Dφ∗Dφe−

∫
φ∗Dφ ∝ 1

detD
(33)

where an uninteresting overall normalization is neglected.
When thinking about fermionic path integrals it is important to remember that the canonical fields ψ̄ and ψ obey

nontrivial equal time commutation relations, while the path integral variables ψ̄ and ψ are Grassmann fields, not
operators, and all anticommute with each other:

{ψ(x), ψ(y)} = {ψ̄(x), ψ(y)} = {ψ(x), ψ̄(y)} = {ψ̄(x), ψ̄(y)} = 0 . (34)

G. Including sources

We can generalize the partition function for free Dirac fermions by adding Grassmann sources for the fermion field.
Defining D = (i/∂ −m) we have

Z(η, η̄) =

∫
Dψ̄Dψ ei

∫
d4x ψ̄Dψ+η̄ψ+ψ̄η

=

∫
Dψ̄Dψ ei

∫
d4x (ψ̄ψ+η̄D−1)D(D−1η+ψ)−η̄D−1η

= e−i
∫
d4x η̄D−1η × Z(0, 0) (35)

where the last equality is obtained by shifting the dummy integration variables to ψ̄′ =
(
ψ̄ + η̄D−1

)
and ψ′ =(

D−1η + ψ
)
.

It follows that correlation functions are given by

〈T (ψ(x1) · · · ψ̄(xk+1) · · ·〉 =
1

Z(0, 0)

[(
−i δ

δη̄(x1)

)
· · ·
(
−i δ

δη(xk+1)

)
· · ·
]
Z(η, η̄)

∣∣∣∣∣
η=η̄=0

(36)

In particular, the propagator is given by

〈Tψ(x1)ψ̄(x2)〉 =
i

D x1,x2

(37)


