I. FERMION PATH INTEGRATION - PHYSICS 570 - FALL 2017
A. The Fermionic Harmonic Oscillator

The prototype for a fermion field is a 2-state system in quantum mechanics, with ground state |0) and excited state
|1), which in QFT will correspond to a fermion state being unoccupied or occupied respectively. I will refer to this as
the “fermionic harmonic oscillator” because we can write the Hamiltonian as

H=124m (b'b—bb") =m(bTb—1) , (1)
where b and b! are operators satisfying anti-commutation relations
{b,b} = {pt, 07} =0, {php}=1, (2)

where {A, B} = AB+ BA. The normalized eigenstates of H consist of the ground state |0) which is annihilated by b:

bj0) =0, (3)
and the excited state
1) =b'0) , (4)
satisfying
H[0) = —3m|0) ,  H[1)=+3m]1). (5)

B. Coherent States

It is convenient to introduce the “coherent states”
) = e P (J0) = wl1)) L (W] =P ((0] = (1)) (6)
where the independent Grassmann numbers 1 and ¢ which are anti-commuting:
(v, 0} ={v, v} ={v,¥} =0. (7)

Note that these are numbers, not Hilbert space operators, but we take them to anti-commute with b and bf. We take
the state |0) to be bosonic, commuting with t, but then |1) = bf|0) is fermionic, anti-commuting with 1. It follows
that we can rewrite the coherent states as

[y = (1—1¢9)]0) — (1),
(@] = (0] (1= 3¢¢) — (1 . (8)

Using the nature of Grassmann numbers, you should be able to show that these states — called coherent states —
obey the following useful properties:

o) = vl 0
(G = (ol (10)
(rlyz) = e g (1)
W) = 1, (12)

(W)@ = (1= ¥)[0)0] + P[0){(1] + P [1){0] — | 1)(1] . (13)



C. Completeness and Grassmann integration

What remains to establish is a completeness relation. We define Grassmann integration so that

/dw ) (@] = 1= [0)(0] + |1)(1] (14)

From eq. (14) we see that integration is therefore defined to look like derivation:

/MMz%%7 (15)

where derivatives with respect to a Grassmann number are themselves Grassmann...in particular, {8@,6¢} =

{0y,¥} = 0. You should check that this counterintuitive definition gives the correct result, that having 958, act on
the expression in eq. (13) gives the desired result on the left hand side of eq. (14).
Consider an general function

F@)=fo+vfi. (16)

If F is an ordinary number, then fy is a number and f; is a Grassmann number that anticommutes with ¢ (I will
assume this, but keep in mind that in supersymmetry you will occasionally encounter a Grassmann function F' in
which case fy is Grassmann and f; is an ordinary number). Note that with f; being Grassmann, the order makes a

difference: ¥ f1 = — f11).
Then we have

Jawrw) =, (a7)
For a function of both 1 and ¢ we have
F@.0)= hot i+ 0fat 00, [ d0dwF@.6) =—f. (18)

where f3 is an ordinary number if F is.

D. Grassmann Path Integration

Now suppose you want to construct

Z=(byle” Gy, b= p(t), wr = U(ty) (19)
as a path integral. We break of the time interval T' = (t; — ¢;) into a lot of small pieces T = Ndt with
P(t; +ndt) = ¢n Yo =P(ti) , UN =(ty) (20)

and similarly for 1, and then we use the completeness relation for coherent states in eq. (14) to write

Z = /di)ldlbl e dipy1dipn 1 (P le” T My 1) Oy _aleT T H by ) - (e ) (21)
A typical term in the integrand is of the form (dropping the zero-point energy)

<1,Z_Jn|e_int|1/)nfl> — <,¢_}n|e—imbfbdt|1/}n71>
<1Ln|1 - imbdet + O(dt2)|wn—1>

= (1 — imPpthn_1 dt + O(dt?)) (Pn|thn_1)

.- 1 - 1 - _
o (im bt dt= 5Pt — 5 b1t + Pt ) (22)

)



where in the last line follows from eq. (11).
Replacing the 1, by a continuous function of ¢ the above expression may be written as

(Gle™H e, 1) = idtD(£) (5 8 —m)p(1)+0(dr?) (23)

Taking the product of all the terms in eq. (21) and taking the limit d¢ — 0 yields the path integral

0 is ity
7Z = [ DyDye™ | S= [ dtp(50¢—m)hp, (24)
with boundary conditions ¢(t;) = ¥, ¥(ty) = ¥y. If we take ¢); = ¢y = 0 we can integrate by parts in S and obtain
S = / dt(i0; —m)y . (25)
Note that we can define correlation functions of the form
_ _ 1 _ _ _ _
(T()(tr) - P(tr)(tkgr) -+ P(tn)) = = | DEDY e p(tr) - (t)(tryr) - P(tn) - (26)
Z

The fact that this gives the time ordered correlation function is easy to see by going back to the discrete variables

1N

E. Generalization to Dirac fermions in four dimensions

The generalization of the fermionic path integral above to free Dirac fermions four dimensions is straight forward:
We just replace the Grassmann numbers ¢ and @ by Grassmann 4-component spinors, and replace S by the Dirac
action,

Z = /D@Dz/; eSo Sp = /d‘*m/?(ia—m)w . (27)

F. Performing Grassmann Path Integrals
Suppose we have Grassmann field ) and ¢ and the Grassmann integral
Z = / DyDyp e J 9P (28)
where C'D is some hermitian differential operator with orthonormal eigenstates x, and eigenvalues A,,:

DXn = )\an . (29)

Then we can expand v and ¢ in terms of these eigenstates:

where the x,(z) are ordinary functions, while the ¢, and ¢, are independent Grassmann numbers. Then the path
integral becomes

Z = / H dén dcn e va" AnCmcn f d*z Xjn (Z)xn(z)
n

/Hdéndcn 672")\néncn
_ / [ den den TTQ = Ancucn)

n

e (31)



But this is nothing other than the determinant of the operator D, so we have
7 = / DD e /9P = det D . (32)

Note the difference between this and gaussian path integration over bosonic variables ¢ and ¢*:

. 1
* —fqb D¢
/ D¢*Doe x (33)

where an uninteresting overall normalization is neglected.

When thinking about fermionic path integrals it is important to remember that the canonical fields 1 and 1) obey
nontrivial equal time commutation relations, while the path integral variables 1) and v are Grassmann fields, not
operators, and all anticommute with each other:

{¥(2),v()} = {¥(@), ()} = {¢(),v )} = {d(2),¥(y)} =0. (34)

G. Including sources

We can generalize the partition function for free Dirac fermions by adding Grassmann sources for the fermion field.
Defining D = (i@ — m) we have

Z(n,n) = /Du?pmifd“wwmwwn
= /Dz/?DQ/J oi [ d*z (byp+aD ™ )D(D ) —7D 1y
— eifd'zaD Ty Z(0,0) )
where the last equality is obtained by shifting the dummy integration variables to 1’ = ( h +77D_1) and o —

(Diln + 1/)).
It follows that correlation functions are given by

T b)) = za | (Ciges) (G ) | 200

In particular, the propagator is given by

Toe)ila) = 5 (37)



