
3 The Friedmann-Robertson-Walker metric

3.1 Three dimensions

The most general isotropic and homogeneous metric in three dimensions is similar to the two
dimensional result of eq. (43):

ds2 = a2

(

dr2

1 − kr2
+ r2dΩ2

)

, dΩ2 = dθ2 + sin2 θdφ2 , k = 0,±1 . (46)

The angles φ and θ are the usual azimuthal and polar angles of spherical coordinates, with
θ ∈ [0, π], φ ∈ [0, 2π). As before, the parameter k can take on three different values: for k = 0,
the above line element describes ordinary flat space in spherical coordinates; k = 1 yields
the metric for S3, with constant positive curvature, while k = −1 is AdS3 and has constant
negative curvature. As in the two dimensional case, the change of variables r = sinχ (k = 1) or
r = sinhχ (k = −1) makes the global nature of these manifolds more apparent. For example,
for the k = 1 case, after defining r = sinχ, the line element becomes

ds2 = a2
(

dχ2 + sin2 χdθ2 + sin2 χ sin2 θdφ2
)

. (47)

This is equivalent to writing

ds2 = dX2 + dY 2 + dZ2 + dW 2 , (48)

where

X = a sinχ sin θ cosφ ,
Y = a sinχ sin θ sinφ ,
Z = a sinχ cos θ ,
W = a cosχ , (49)

which satisfy X2 + Y 2 + Z2 + W 2 = a2. So we see that the k = 1 metric corresponds to
a 3-sphere of radius a embedded in 4-dimensional Euclidean space. One also sees a problem
with the r = sinχ coordinate: it does not cover the whole sphere. In going from the north
pole (χ = 0) to the equator (χ = π/2), the variable r ranges from r = 0 to r = 1; however, in
proceeding from the equator to the south pole of the sphere (χ = π), r sinχ runs back from
r = 1 to r = 0. So the full space has coordinates which are not single valued in r.

The proper distance dbetween the origin and an object at radial coordinate r is given by

d =

∫ r

0
a

dr′
√

1 − kr′2
dr′ = a×











sin−1 r k = 1

r k = 0

sinh−1 k = −1

(50)

For the case k = 1 we see that d is not defined for r > 1, and that for r = 1, d = aπ/2. This
is the distance along the sphere from the north pole to the equator; to compute the distance
from the north pole to the south pole in these coordinates, you need to double the result, to
get d = aπ.
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3.2 Four dimensions: The Friedmann-Robertson-Walker met-

ric

It is simple to go to the case of interest: four dimensional spacetime. Because of the homogene-
ity, we can choose the same time coordinate for each point in space, and at each time slice, we
must have the isotropic and homogeneous three dimensional metric eq. (46). However, there
is no constraint relating the scale factor a at different time slices, which can therefore be a
function of time. Aside from isotropy and homogeneity, general relativity requires that locally
(eg, near the origin) the line element be invariant under Lorentz transformations:

ds2 = dt2 − d~x2 . (51)

Thus we arrive at the Friedmann-Robertson-Walker (FRW) metric, which is the most general
metric (up to coordinate transformations) fulfilling the cosmological principle:

ds2 = dt2 − a(t)2
(

dr2√
1 − kr2

+ r2dΩ2

)

. (52)

These coordinates {t, r, θ, φ} are called co-moving coordinates. The reason is because
two objects at different spatial coordinates can remain at those coordinates at all times, while
the proper distance between them changes with time according to how the scale factor a(t)
changes with time. Picture to dots on a balloon whose coordinates are fixed, while the radius
of the balloon changes with time. That the proper distance will change with time is evident
— one needs merely to replace a in the three dimensional example eq. (50) by a(t). However,
one needs to show that in fact an object can remain at rest at fixed spatial coordinate. The
world line of such an object, parametrized by λ = t, satisfies

dt

dλ
= 1 ,

dxi

dλ
= 0 , (53)

and we have to show that this is indeed a geodesic for our metric. Since the geodesic equation
eq. (23) is

0 =
d2xα

dλ2
+ Γαµν

dxµ

dλ

dxν

dλ
, (54)

it follows that the world line eq. (53) satisfies this equation provided that Γαtt vanishes. However,
that is evident if you think of how the geodesic equation is derived from the metric by the
Euler-Lagrange equations: since the coefficient of dt2 in eq. (52) is coordinate independent,
there can be no terms proportional to (dt/dλ)2 in the geodesic equation.

3.3 The redshift of light

Now I will demonstrate that light gets red-shifted in the FRW universe due to the time de-
pendent scale factor. Suppose there is a galaxy at rest in the co-moving coordinates, with
radial coordinate r1, and we are at the origin. Light is emitted by this galaxy at time t1 with
frequency ν1 and received on earth at time t0 with frequency ν0. We wish to determine the
relation between ν0 and ν1.

Light travels on ‘null geodesics — that is, on geodesics with ds = 0. Note that in flat
space where ds2 = dt2 −d~x2, ds = 0 simply means that the speed of light is c = 1. However, it
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is possible to choose locally flat coordinates about any point in curved space, so having light
travel on null geodesics means that any observer along its path sees it go by with velocity
c = 1. Thus along a radial light path in the FRW universe,

dt

a(t)
=

dr√
1 − kr2

. (55)

Now consider the emission of two subsequent crests of a light wave:

crest #1 t r

emitted: t1 r1
received: t0 0

crest #2 t r

emitted: t1 + δt1 r1
received: t0 + δt0 0

(56)

It follows from eq. (55) that

∫ t0

t1

dt

a(t)
=

∫ t0+δt0

t1+δt1

dt

a(t)
=

∫ 0

r1

dr√
1 − kr2

. (57)

Subtracting the first integral from the second, and assuming δt0,1 � a
ȧ , we get

δt0
a(t0)

=
δt1
a(t1)

(58)

or, since δt0,1 = 1/ν0,1, the redshift z is given by

1 + z =
ν1

ν0
=
a(t0)

a(t1)
. (59)

Note that the redshift only depends on the ratio of the scale factor at reception to the scale
factor at emission. It is not simply a function of the relative motion of the source at the time
of emission; in fact if the universe were to contract for a while, and then expand, it is possible
for a source which is approaching us to emit light which we see as shifted to the red.

It is useful to consider eq. (59) in terms of the wavelength λ instead of the frequency ν:

1 + z =
λ0

λ1
=
a(t0)

a(t1)
. (60)

We see that the wavelength of light just contracts and stretches with the scale factor, and that
fact explains the whole redshift phenomenon. In this view it is not much like the Doppler shift
described in §1.2 in the context of special relativity.

3.4 Redshift of a thermal spectrum

Suppose we view a thermal source with temperature T1 with absolute luminosity L. The power
emitted per unit area per unit frequency is given by the Planck formula

Sν =
2πh

c2
ν3
1

ehν1/kT1 − 1
. (61)

Integrating Sν over frequency ν1 and multiplying by the area A of the source gives

L = A
π4

15h4
(kT )4 , (62)
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so the total energy emitted by the object per time dt1 in a frequency interval [ν1, ν1 + dν1] is

dE1 = ASνdν1dt1 = L
15

π4

(

hν1

kT1

)3 1

ehν1/kT1 − 1

(

h

kT1

)

dν1 dt1 . (63)

The energy received on earth per unit area in a time dt0 in a frequency interval [ν0, ν0 + dν0]
is then obtained from dE1 above in the following way:

1. One must divide by the area of the spherical shell of light, when received; the relevant
part of the metric is ds2 = a(t)2r21dΩ

2, and so the area of the light pulse is (4πa2
0r

2
1),

where a0 = a(t0).

2. One must account for the fact that the photons emitted with frequency ν1 are received
with frequency ν0 = ν1/(1 + z) and have correspondingly lower energy

3. We have also seen that photons emitted over a time dt1 will be received over a time
interval dt0 = dt1(1 + z).

Therefore the energy we receive on earth per unit area is

dE0 =

(

1

1 + z

)

L

4π(a0r1)2
15

π4

(

hν1

kT1

)3 1

ehν1/kT1 − 1

(

h

kT1

)

dν0 dt0

=

(

1

1 + z

)2 L

4π(a0r1)2
15

π4

(

hν0

kT0

)3 1

ehν1/kT0 − 1

(

h

kT0

)

dν0 dt0

= `
15

π4

(

hν0

kT0

)3 1

ehν1/kT0 − 1

(

h

kT0

)

dν0 dt0 (64)

where we have defined the apparent luminosity

` =

(

1

1 + z

)2 L

4π(a0r1)2
(65)

and

T0 ≡ T1

1 + z
. (66)

Note that the expressions for dE0

dt0dν0
and dE1

dt1dν1
take the same functional form, except for the

overall normalization, the substitution of ν0 for ν1, and of T0 for T1. This means that the
spectrum observed still looks like blackbody radiation, but with a temperature red-shifted by
a factor of 1/(1 + z).

3.5 Measures of distance

To observationally determine the parameters of the FRW metric, k and a(t), one important tool
will be to compare the redshift of an object with its distance. However, while it is theoretically
straightforward to compute the proper distance to an object

∫ r

0

dr′
√

1 − kr′2
, (67)

that is not a quantity readily measured. Instead one usually measures distances in one of the
three following ways.
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Figure 3: Determining a distance by parallax

3.5.1 Parallax

For relatively nearby objects (. 50kpc) one can use parallax to measure the distance of an
object. The idea is to look at the same object from opposite sides of the earth’s orbit about the
sun, and record the angle 2θ by which the orientation of the telescope must be shifted between
the two observations. If the radius of the earth’s orbit projected onto the plane perpendicular
to the starlight propagation x1is b, then in Euclidean space, the distance to a distant object at
r = r1 is given by d = b/θ (see Fig. 3). Therefore one defines the parallax distance dp = b/θ.
In the FRW space one can show that

dp = a(t0)
r1

√

1 − kr21
. (68)

This looks rather strange; for example, with k = r1 = 1, this distance diverges, even though
we know that the k = 1 space is compact, and that the greatest [proper distance one can get
from any other point in that space is aπ! However, the above result makes sense. Recall that
for k = 1, the spatial slices of our space are 3-spheres. If the star is at the north pole, and we
are observing from two point on the equator, then our telescope always points due north, and
θ = 0. It follows that dp = ∞ even though the star is a finite proper distance away. I will not
derive the above result, but you can find it in Weinberg’s gravitation book, and other sources.

3.5.2 Angular distance

Another way to measure distance is to measure the angular extension of a distant object whose
size is known, as in Fig. 4. If the object has diameter D, then a suitable definition of angular
distance for distant objects is dA = D/θ. In the FRW metric, D is the proper width of the
object at the time of the emission of light. Using ds2 = . . . − a(t)2r2dθ2 − . . ., this gives us

D θ

Figure 4: Determining a distance by angular extension

18



D = a(t1)r1θ, for an object of angular extension θ emitting light at time t1, so that

dA = r1a(t1) . (69)

3.5.3 Luminosity distance

Suppose we have a source whose absolute luminosity L is known, defined as the total energy
output of the source per unit time. If we draw an imaginary sphere about the source inter-
secting our position, then in Minkowski space, the power received on earth is ` = L/A, where
A = 4πd2, d being the distance to the source. Therefore a sensible definition of luminosity
distance is

dL =

√

L

4π`
. (70)

With the FRW metric, we use the apparent luminosity for `, given in eq. (65). As a result
the luminosity distance is given by

dL = r1a(t0)(1 + z) (71)
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