
2 Cosmology and GR

The first step toward a cosmological theory, following what we called the “cosmological prin-
ciple” is to implement the assumptions of isotropy and homogeneity withing the context of
general relativity (GR). I will assume that you are familiar with special relativity; some ac-
quaintance with GR would be helpful but not necessary for this course. Good introductions
can be found in the recent book Gravity: An Introduction to Einstein’s General Relativity by
James Hartle, or at Sean Caroll’s web site.

General Relativity (GR) is the theory that controls the large scale evolution of the universe.
There are two parts to the theory, which are generalizations the Poisson equation and Newton’s
law:

∇2φ = 4πGρ , (8)

a = −∇φ . (9)

The first of the above equations tells us how a mass distribution ρ gives rise to a gravitational
potential φ, while the second tells us how a particle accelerates in the resulting potential. In
GR, the Poisson equation eq. (8) is replaced by Einstein’s equation

Gµν = 8πGNTµν , (10)

where Gµν on the left hand side is called the Einstein tensor, and which describes the geometry
of spacetime, while Tµν on the right hand side is the energy-momentum tensor, describing the
distribution of energy and momentum. Tµν acts as a source for spacetime curvature, just as ρ
serves as a source for the gravitational potential φ in Poisson’s equation eq. (8).

Given a particular geometry, the trajectory that particles follow is given by a geodesic,
which is path of shortest distance between two points, with the concept of distance suitably
defined. Therefore the geodesic equation replaces Newton’s law, eq. (9). I will begin by briefly
discussing differential geometry and geodesics, then turning to Einstein’s equations and some
of their solutions.

2.1 The metric and and coordinate transformations

Consider some manifold in d dimensions, such as a curved two-dimensional surface, or four
dimensional Minkowski space. We can refer to points on the surface by labeling them each
with a set of d coordinates xµ where µ = 1, . . . , d. The geometry of the manifold can be
specified in terms of a metric gµν which allows us to compute the distance ds between the
point at xµ and one nearby at xµ + dxµ, where

ds2 = gµνdx
µdxν . (11)

In general, gµν is a function of xµ; it is symmetric, gµν = gνµ. As is the convention in special
relativity, an upper and a lower index which are identical are assumed to be summed over
(“contracted”).

If we change coordinate systems from xµ to x̄µ, then in terms of the new coordinates

ds2 = gµν

(

∂xµ

∂x̄α

) (

∂xν

∂x̄β

)

dx̄αdx̄β = ḡαβdx̄
αdx̄β , (12)

so we see that in the new coordinate system, the metric is given by

ḡαβ = gµν
∂xµ

∂x̄α
∂xν

∂x̄β
(13)
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If we think of gµν as a matrix, then we can write the above transformation as a matrix equation

g(x) → ḡ(x̄) = ΛT (x̄)g(x(x̄))Λ(x̄) , Λαβ ≡ ∂xα

∂x̄β
. (14)

We can also define the inverse of the metric, writing it with upper indices:

gαβgβγ ≡ gαγ =

{

1 α = γ,

0 otherwise.
. (15)

In general, tensors are objects with upper and/or lower indices that behave in the following
way under coordinate transformations x → x̄: for each lower index, the tensor T ···

···α··· gets
multiplied by dxα

dx̄β
with the α’s contracted; while for each upper index, the tensor T ···α···

··· gets
multiplied by

dx̄β

dxα with the α’s contracted. The metric gµν , its inverse gµν and the partial derivatives

∂µ ≡ ∂
∂xµ are examples of tensors; the coordinate xµ is not a tensor, but the differential dxµ is.

Indices on tensors can be raised and lowered by means of the metric tensor. A string of
tensors with some indices contracted is also a tensor. A tensor with no indices, or equivalently
a string of tensors with all their indices contracted is a scalar, invariant under all coordinate
transformations.

Here are some simple examples of metrics and coordinates in two dimensions:

plane (Cartesian) plane (polar) 2-sphere

xµ {x, y} {r, θ} {θ, φ}

ds2 dx2 + dy2 dr2 + r2dθ2 a2
(

dθ2 + sin2 θdφ2
)

gµν

(

1
1

) (

1
r2

)

a2

(

1
sin2 θ

)

gµν
(

1
1

) (

1
r−2

)

a−2

(

1
sin−2 θ

)

xµ {x, y} {r, r2θ} {a2θ, a2φ sin2 θ}

(16)

One can easily arrive at the above metric in polar coordinates by making the change of
variables

x = r cos θ , y = r sin θ (17)

and following the prescription in eq. (14). A more amusing change of variables is to take the
sphere, expressed in terms of polar and azimuthal angles {θ, φ}, and to define ρ = sin θ. Then
dρ = cos θdθ, or dθ2 = dρ2/(1 − ρ2). Thus in the new variables {ρ, φ} we have

ds2 = a2

(

dρ2

1 − ρ2
+ ρ2dφ2

)

. (sphere) (18)

This is still the metric for a sphere. Note that it looks similar to the metric for a plane with
r ≡ aρ.
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2.2 Geodesics

Given a metric, one can compute the shortest path between two points; such paths are called
geodesics. It is interesting to learn to compute them for two reasons: (i) objects moving in
a gravitational field follow geodesics; (ii) computing geodesics is an efficient way to compute
Christoffel symbols, an important object in differential geometry out of which on constructs
curvature.

The equation for the geodesics can be simply derived using variational calculus. We
parametrize a path xµ(λ) by the parameter λ with, for example, ξµ(0) = xµi being the start
of the path and xµ(1) = xµf being the end of the path. Then we wish to stationarize the path
length L:

0 = δL = δ

∫ xµ
f

xµi

ds = δ

∫ 1

0

√

d2s

dλ2
dλ = δ

∫ 1

0

√

gµν
dxµ

dλ

dxν

dλ
dλ . (19)

We can make our task slightly easier by noting that the path that extremizes the integral of
√

ds2/d2λ also extremizes the integral of 1
2 d

2s/dλ2, so we solve

0 = δ

∫ 1

0

(

1
2 gµν

dxµ

dλ

dxν

dλ

)

dλ , (20)

which yields the “Lagrangian”

L = gµν(x)ẋ
µẋν (21)

which obeys the Euler Lagrange equation (where gµν,α ≡ ∂gµν/∂xα)

0 =
d

dλ

∂L

∂ẋµ
− ∂L

∂xµ

=
d

dλ

(

gαν
dxν

dλ

)

− 1
2gµν,α

dxµ

dλ

dxν

dλ

= gαν,β
dxβ

dλ

dxν

dλ
+ gαν

d2xν

dλ2
− 1

2gµν,α
dxµ

dλ

dxν

dλ
, (22)

where gµν,α ≡ ∂gµν/∂xα. By renaming dummy (contracted) indices, the above expression
may be rewritten in the form

0 =
d2xα

dλ2
+ Γαµν

dxµ

dλ

dxν

dλ
, (23)

Γαµν ≡ 1
2g
αβ (gβµ,ν + gβµ,ν − gµν,β) . (24)

Γαµν is called a Christoffel symbol; it is symmetric in its lower indices,

Γαβγ = Γαγβ . (25)

One can show that under coordinate transformations iΓ transforms inhomogeneously, and is
therefore not a tensor. Often the simplest way to compute the Christoffel symbols is not to use
the formula eq. (24), but rather the variational equation eq. (20) in conjunction with eq. (23).
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2.3 Two dimensional isotropic metrics

As an example it is interesting to compute the Christoffel symbols for the most general isotropic
metric in two dimensions. We take as our coordinates {r, θ}, in which case the most general
line element is

ds2 = A(r, θ)dr2 +B(r, θ)dθ2 + C(r, θ)dθdr (26)

By making a change of variables, it is possible to cancel the mixed term proportional to C(r, θ).
If we now insist that the metric be isotropic (independent of θ) then the line element takes the
form

ds2 = Ã(r)dr2 + B̃(r)dθ2 . (27)

I will assume that Ã and B̃ are positive functions. Then we can make the change of variables
a2ρ2 = B̃(r), where a is a number of dimension length. We arrive at element

ds2 = h(ρ)dρ2 + ρ2dθ2 , (28)

where h(ρ) is an arbitrary, dimensionless function. Since we do not want a conical singularity
at the origin (if you roll a piece of paper into a cone, the tip of the cone is called a conical
singularity) it follows that for a very small circle about the origin, we had better recover the
flat space relation between the circumference C and the radius R of the circle: C = 2πR.
With the above metric we find that for the circle {dρ, 0 ≤ θ < 2π}, the length of the radius
is R = h(0)dρ, while the length of the circumference is C = 2πdρ. So we have the additional
constraint

h(0) = 1 . (29)

This is the most general isotropic metric in two dimensions.
Now let us compute the Christoffel symbols. From ds2 we ‘construct the “Lagrangian”

L =
(

h(ρ)ρ̇2 + ρ2θ̇2
)

(30)

with the Euler-Lagrange equations

0 =
d

dλ
(2hρ̇) −

(

h′ρ̇2 + 2ρθ̇2
)

,

0 =
d

dλ

(

2ρ2θ̇
)

, (31)

which can be rewritten as

ρ̈+
h′

2h
ρ̇2 − ρ

h
θ̇2 = 0 , (32)

(33)

θ̈ +
2

ρ
ρ̇θ̇ = 0 . (34)

By comparing eq. (34) with eq. (23), we find that the nonzero Christoffel symbols for this
metric eq. (28) are just

Γ1
11 =

h′

2h
, Γ1

22 = −ρ
h
, Γ2

12 = Γ2
21 =

1

ρ
. (35)
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2.4 Curvature

Next let us ask what the most general isotropic, homogeneous metric is in two dimensions. To
see if the metric describes a homogeneous space, we need to define something that is supposed
to remain constant over the manifold. The quantity should not be coordinate dependent, or
what looks constant in in set of coordinates does not in another, and by “homogeneity” we refer
to an intrinsic property of the space independent of coordinate choice. The scalar curvature
such a quantity.

Suppose you started walking East along the earth’s equator holding an arrow in you hand
pointed East. After walking a quarter of the way around the world, you turn at right angles
heading North, but you are careful to not turn the arrow; as you march North, the arrow is
pointing at 90◦ to your right.. When you reach the North Pole, you make a 90◦ left turn and
head South, again careful not to rotate the arrow, which now points directly behind you as
you proceed back to the equator. When you reach the equator, you are back at your starting
point; however the arrow which you were careful to never rotate relative to your path (parallel
transport) is now pointing North, whereas it was pointing East when you began your journey.
This rotation of the arrow is a result of the curvature of the Earth; nothing analogous occurs
when tracing a triangular path on a flat surface.

By considering infinitesimal closed paths on a manifold and the effect on the orientation of
arrows (vectors) one can make precise a definition of curvature. One arrives at the definition
of three useful and related tensors for describing curvature, The Riemann tensor, the Ricci
tensor, the Ricci scalar, and the Einstein tensor. Their definitions are

Rαβγδ =
∂Γαβδ
∂xγ

−
∂Γαβγ
∂xδ

+ ΓαγεΓ
ε
βδ − ΓαδεΓ

ε
βγ Riemann tensor

Rαβ = Rγαγβ =
∂Γγαβ
∂xγ

− ∂Γγαγ
∂xβ

+ ΓγαβΓ
δ
γδ − ΓγαδΓ

δ
βγ Ricci tensor

R = Rαα Ricci scalar

(36)

The Riemann tensor has some simplifying symmetries:

• Antisymmetry: Rαβγδ = −Rβαγδ = −Rαβδγ ;
• Symmetry: Rαβγδ = Rγδαβ ;

• A cyclic property: Rαβγδ +Rαγδβ +Rαδβγ = 0 .

As a result of these symmetries, one finds that the Riemann tensor in d dimensions has in
general Cd = d2(d2 − 1)/12 independent components. For d = 2, 3, 4 dimensions we find
C2 = 1, C3 = 6 and C4 = 10. Metrics with special symmetry can have far fewer independent
components.

The Ricci scalar R is something that must be constant everywhere on our two dimensional
manifold if it is to describe a homogeneous space.

2.5 Two dimensional isotropic and homogeneous metrics

So as a warm-up for four dimensional cosmology, let’s compute the Ricci scalar for the isotropic
metric eq. (28), demand it be constant, and determine the allowed functions h(ρ) in the
metric eq. (28). Since we are in two dimensions, there is only one independent component of
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the Riemann tensor. For the two-dimensional isotropic metric with non-vanishing Christoffel
symbols given by eq. (35), the Riemann tensor is given by

R1
212 = ∂1Γ

1
22 − ∂2Γ

1
21 + Γ1

11Γ
1
22 − Γ1

22Γ
2
21 =

ρh′

2h2
. (37)

Then, using the symmetries of the Riemann tensor,

R2
121 = g22g11R

1
212 =

h′

2ρh
. (38)

It follows that the Ricci tensor is

R11 = R2
121 =

h′

2ρh
, R22 = R1

212 =
ρh′

2h2
, R12 = R21 = 0 , (39)

or

Rαβ =
h′

2ρh2

(

h
ρ2

)

=
h′

2ρh2
gαβ . (40)

Finally this implies that the Ricci scalar is given by

R = Rαα = gαβRαβ =
h′

ρh2
. (41)

Requiring that R equal a constant c everywhere gives us the differential equation for the
function h(ρ) : h′/h2 = cρ, with solution

h =
1

1 − cρ2/2
, (42)

where I have implemented the boundary condition on h, eq. (29). We can now rescale ρ →
√

2/|c|ρ, to obtain the metric

ds2 = a2

(

dρ2

1 − kρ2
+ ρ2dθ2

)

, (43)

with k = c/|c| = 0,±1, and a2 = 2/|c|. The parameter a has dimension of length and is
called the scale factor; the curvature R = c is given by R = 2k/a2. Note that the sign of the
curvature appears as the parameter k: a flat space corresponds to k = 0, and the metric is
just that for the plane in polar coordinates; if k = 1 we have constant positive curvature and
get the metric for the sphere that we derived in eq. (18). The case k = −1, a surface with
constant negative curvature, is the surface AdS2, two dimensional anti-de Sitter space. It can
be described as a surface embedded in three dimensional Minkowski space, namely the surface
satisfying

z2 − x2 − y2 = 0 (44)

in a three dimensional space with line element

ds2 = dx2 + dy2 − dz2 . (45)

As we will see, the metric eq. (43) is similar to what we will encounter when describing the
isotropic, homogeneous universe.
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