The following problems are worth five points each; two will be graded.

1. Which of the following describe groups, and which do not? Of the ones which do describe groups, which are Abelian? Justify your answers.

	e	a	b	c	d
e	e	a	b	c	d
a	a	d	С	e	b
b	b	c	a	d	e
c	С	e	d	b	a
d	d	b	e	a	c

	e	a	b	c	d
e	e	a	b	c	d
a	a	b	c	d	e
b	b	d	a	e	С
c	c	e	d	b	a
d	d	С	е	a	b

Table 1

Table 2

- (a) Table 1 above;
- (b) Table 2 above;
- (c) The four matrices $\{\sigma_0, \sigma_1, \sigma_2, \sigma_3\}$, under matrix multiplication, where σ_0 is the 2 × 2 unit matrix, and $\sigma_{1,2,3}$ are the Pauli matrices;
- (d) The rational numbers under division;
- (e) Unitary 3×3 matrices U with det U = 1, under matrix multiplication;
- 2. Consider the group G of transformations that leave a square invariant (it's called C_{4v}). It consists of $\{e, C_4, C_2, C_4^3, \sigma_x, \sigma_y, \sigma_{d1}, \sigma_{d2}\}$, corresponding to the identity (e), clockwise rotations by $\pi/2$, π and $3\pi/2$ about the center $(C_4, C_2, C_4^3$ respectively); reflections about the x and y axes (σ_x, σ_y) ; and reflections about the diagonal axes passing through the first and second quadrants $(\sigma_{d1}, \sigma_{d2})$.

(a) Construct the multiplication table for the group. (Hint: label the corners of the square, and see how the different group elements g permute them. Remember that a product g_1g_2 means "act first with g_2 , then with g_1 ").

- (b) Construct the conjugacy classes for this group.
- (c) How many irreducible representations exist for this group, and what are their dimensions?
- (d) Determine all of the 1-dimensional representations for this group.
- (e) Consider how the unit vectors in the plane \hat{x} and \hat{y} transform under the group, and thereby construct a 2-dimensional representation of the group (call it E). Is this representation irreducible?
- (f) Write down the character table for this group, and decompose $E \otimes E$ into irreducible representations.
- 3. Show that the only Abelian group of order 74 is the cyclic group Z_{74} . (Hint: think about its cyclic subgroups.)
- 4. The icosahedral group is the symmetry group of the dodecahedron and the icosahedron, pictured below:

The character table for this group is given by

I	e	$12C_5$	$12C_{5}^{2}$	$20C_3$	$15C_2$	
\overline{A}	1	1	1	1	1	
T_1	3	$-2\cos 144^{\circ}$	$-2\cos72^{\circ}$	0	-1	(1)
T_2	3	$-2\cos72^{\circ}$	$-2\cos 144^{\circ}$	0	-1	(1)
G	4	-1	-1	1	0	
H	5	0	0	-1	1	

From the notation and the figures, you should be able to relate the C_5 , C_3 and C_2 as five-fold, three-fold, and two-fold rotational symmetries of these solids.

There is a subgroup of I called D_5 (a dihedral group) consisting of the ten group elements $\{e, C_5, C_5^2, C_5^3, C_5^4, C_2^{(1)}, \ldots, C_2^{(5)}\}$, where C_5 is a rotation by $2\pi/5$ about one of the five-fold symmetry axes of the dodecahedron (call it the z-axis), and the $C_2^{(i)}$ the rotations by π about the five two-fold symmetry axes in the x-y plane. The character table for D_5 is given by

(a) Decompose the irreducible representations of I into irreducible representations of the D_5 subgroup. (this is analogous to saying

- that a four-vector of Lorentz symmetry transforms as a scalar plus a 3-vector under the subgroup of spatial rotations, such as $p_{\mu} = \{E, \vec{p}\}\)$.
- (b) Suppose a Hamiltonian takes the form $H = H_I + \lambda H_{D_5}$ where H_I is invariant under I, while H_{D_5} is less symmetric, only respecting the subgroup D_5 . Suppose that when $\lambda = 0$, there is an energy eigenstate which transforms as the H representation of the I, and is 5-fold degenerate. How do the energy levels of these five states split up as λ is turned on (that is, what are their exact degeneracies)?