Assigned problems. Two problems will be graded, and will be worth 50 points each.

- 1. A spin 1/2 particle is measured to have $S_z = +\frac{\hbar}{2}$. Subsequently you measure the spin in the direction $\hat{n} = (0, \sin \theta, \cos \theta)$. Assume there are no magnetic fields in the apparatus that could cause the spin to precess between measurements.
 - (a) What is the probability that you will measure the electron spin in the \hat{n} direction to equal $-\frac{\hbar}{2}$? Sketch your answer as a function of the angle θ .
 - (b) Explain why your answer makes sense for the three particular values $\theta = 0, \pi/2, \pi$.
- 2. Show that for a particle with both spin and orbital angular momentum, the $|s, \ell, j, m\rangle$ state is an eigenstate of the operator $\vec{L} \cdot \vec{S}$, and compute its eigenvalue. Remember that this state is a simultaneous eigenstate of the operators \vec{S}^2 , \vec{L}^2 , \vec{J}^2 and J_z with eigenvalues $\hbar^2 s(s+1)$, $\hbar^2 \ell(\ell+1)$, $\hbar^2 j(j+1)$ and $\hbar m$ respectively. The total spin \vec{J} is defined as $\vec{J} = (\vec{L} + \vec{S})$. Hint: Rewrite $\vec{L} \cdot \vec{S}$ in terms of \vec{S}^2 , \vec{L}^2 and \vec{J}^2 .
- **3.** Particle 1 and particle 2 have spins $s_1 = s_2 = 1/2$. They have a spin-spin interaction (like you would expect for two little magnets) corresponding to the Hamiltonian:

$$H = c \,\vec{S}_1 \cdot \vec{S}_2 \tag{1}$$

where \vec{S}_1 is the spin of particle 1, and \vec{S}_2 is the spin of particle 2.

- (a) What is the sign of c if the spins preferentially anti-align?
- (b) Use the Hamiltonian eq. (1) to compute the four energy eigenvalues for the two particles. (As in the hint for problem 1, rewrite $\vec{S}_1 \cdot \vec{S}_2$ in terms of \vec{S}_1^2 , \vec{S}_2^2 and \vec{S}^2 , where \vec{S} is the total spin, $\vec{S} = (\vec{S}_1 + \vec{S}_2)$).
- (c) Identify the four different energy levels of H with the appropriate $|s_1, s_2, s, m_s\rangle$ state, where $s_1 = s_2 = 1/2$, and s and m_s refer to the total spin and the z-component of the total spin respectively.
- (d) Identify the same four energy levels of H with the appropriate combinations of $|s_1, m_1, s_2, m_2\rangle$ states, where $s_1 = s_2 = 1/2$, and m_1 and m_2 are the eigenvalues (in units of \hbar) of the operators $(S_1)_z$ and $(S_2)_z$ respectively.