Physics 324, Fall 2001 Problem set #6 Due: Mon. 12/10/01

1.

a) Consider a particle in one dimension, with the potential

V(z) = —g(0(z+a)+d(x —a)),

where §(x) is the Dirac delta function and g > 0. Find the ground state energy
in terms of m, g, a and h.

Correction: I didn’t realize when I assigned this, that solving for the ground
state energy involved solving a transcendental equation (which cannot be solved
analytically). So just set up the equation you need to solve for the energy, and
show how you can solve it graphically, similar to our treatment of the finite square
well.

We can define three regions: region I is for z < —a; region 1T is for 0 < |z| < a,
and region III is for z > a. We are looking for a bound state which means F < 0,
since V(z) = 0 for x = 00 in this problem. Define

k= +/2m|E|/h .

Then the general solution which does not blow up at z = o0 is

Ae* Region 1
u(zr) = { Bcosh kx + C'sinh kz  Region II (1)
De™"= Region III

Since we are interested in the ground state energy, we can simplify our life by
only considering even parity solutions:

Aer” Region I
u(z) = { Bcoshkz Region II (2)
Ae "= Region 111

Now we need only consider the boundary conditions at £ = a or z = —a, but not
both. I will consider only =z = a.

The boundary conditions for a d-function potential, as discussed in class, are:

UU(CE) = UIU(CL) ) (3)



and

h2 ! !
“om (UHI(CL) - uH(a)) - QUIH(G) =uU. (4)
Defining
_ 2myg
Ko = h2 )

the second boundary condition reads:
uprr(a) = up(a) = Kourrr(0) - ()
Plugging in our general solution to these equations, we get:
Bcoshka = Ae™™ (6)
and
—kAe "™ — kBsinh ka = kgAe ™™ = Brksinhka = A(ko — k)e " . (7)

Dividing eq. (7) by eq. (6) gives a transcendental equation for £ (and hence the
binding energy |E):
Ko — K

tanh ka = 8
anh ka pani (8)

To solve this graphically, multiply the top and bottom of the right side of the
above equation by a, and define

2
z = ka = a\/2m|E|/k , 20 = Ko = T;;ga ; (9)

so that

Z0 — %

tanh z = (10)

z

Then plot the functions tanh z (red) and #-* for various z. See plot below for
2o = .5 (blue) and zy = 2 (green):

2.
1.5
1

0. 5¢

0 1 1.5 2-=25_3 35 4

-0.5¢




b)

Where the red curve (tanh) intersects the blue or green curves (22-%), given

some number z, = 2mga/h?, that value for z is your solution, and you can find
E| = h? 2
|E| = 57 (2/a)”.

How does the ground state energy change as you increase a? Consider the analo-
gous problem where the delta functions are replaced by finite square wells. With-
out solving any equations argue from the uncertainty principle why the ground-
state energy will go up with the separation of the two square wells by comparing
the cases when the square wells are touching each other, to when the are infinitely
separated. This can be considered as a crude model for certain types of molecular
binding; the delta functions or square wells can represent atoms at separation 2a
to which an electron is attracted. The sharing of the electron between the two
atoms gives rise to the binding force you have found.

Correction: You should be able to show that for large separation a, the binding
energy goes to a constant (why?). You should also be able to show that for small
separation a, the binding energy decreases as a increases.

Note for very large 2y, corresponding to large separation a, the tanh curve will

equal one in that region, and we get the solution -2 =1, or z = /2, implying
for the energy
g*m

which is just the binding energy for a particle in a single é-function potential,
V(z) = —gdé(x). This makes sense when the J-functions are infinitely separated.

For small separation (20 < 1) we can Taylor expand our transcendental equation
eq. (8) to get

(20 — z) = ztanh z = 0 + O(2?) = z=2+0(%) (12)
or
E=-2¢°m (a—0) (13)

This is the binding energy for a particle in a single J-function potential V(z) =
—2¢6(x) (which is what you get if @ — 0 so that —gd(z + a) and —gdé(x — a) are
sitting on top of each other) and is 4x the binding energy that we got for a — oc.
To see the a dependence of the energy for small a it is necessary to expand eq.
(8) to one further order:

(20 — z) = ztanh z = 2* + O(2?) = z=2—2 +0(z) (14)



or
E =2¢’m (—1+4agm/F* + ...) (15)

which shows the binding energy |E| decreasing as a increases.

Finally, with a little algebra, one can show directly by differentiating both sides of
eq. (8) with respect to a, that d|E|/da is always negative for positive a, meaning
that the binding energy decreases monotonically with the separation a.

* 2. Consider a step potential in one dimension,

0 <0
V(x)—{_vo eSO

Sketch this potential (assume Vi > 0). Assume a beam of particles is incident head-
ing in the +x direction, originating from r = —oo, with energy E. Compute the
reflection and transmission probabilities as a function of k = v2mE/h and k' =
\/2m(E + Vy)/h. What would the classical result be for the reflection probability?

Define x < 0 to be region I and z > 0 to be region II. Taking into account that no
particles are coming in from the right, the general solution is

oo = { e 7 ety = w2
Then the boundary conditions are
ur(0) = urr(0), wp(0) = up,(0) (17)
or
I+R=T, ik(I — R) = ik'T (18)
with the solution for the reflection probability
PR:\RP:‘k—W: @—mﬂ e B 19)
1> [k+ K VE+VI=¢ Vo

A plot of Pg versus £ = E/Vj looks like:



0.8

0.6

0.4}

0.2¢

0.5 1 1.5 2

Note that the reflection probability goes to zero for E > Vj, as it would classically;
however, for £ much smaller than V; we see almost total reflection!

. Gasiorowicz 11-2

Using
x=rsinflcos¢d, y=rsinflsing, z=rcosh, (20)
one finds
1
Yoo = 4/ —
0.0 47
3 x4+
Vig = /e
8Tt r
3z
Yip = y/—2
1,0 A7 r
15 (z + 1y)?
Yoo = 4]-
2 327 r?
15 (z +1y)z
Yor = —4)-—
> 327 r?
5 322 —r?
Y; = _— 21
0 16r 12 (21)

In the above equations, r = /22 + y? + 22.

The fact that all of these functions are invariant when you scale z, y and z (and hence
r) by a common factor shows that they only depend on angles.



x 4. Gasiorowicz 11-5

Rewrite L2 + L2 = L* — L so that

L?—1%? [?

H= =
of, 2

(22)

Evidently, the wavefunctions for the rotator (think of it as a dumbell, or a diatomic
molecule with the distance between atoms being rigidly fixed) are just the Y, (6, ¢),
where 6 and ¢ define the orientation of the rotator. The energies are the eigenvalues
of H: energies

l+1)—m? m?
Epp=M|"+"— + — 23
‘ ( L 2 23
5. Gasiorowicz 11-8
We saw in class that

Y33 = Ne*®sin 0 . (24)

We find the normalization by requiring

T 27 ) ) L . 641 )
1:/ dH/ d¢sinf|Y;3]” = |N| 27r/ df sin OZQ\N| , (25)
0 0 0

so with the usual sign convention (negative N for odd ¢) we get

[35 .
Yiz=— @ef‘“ﬁsmf‘e. (26)

To get the lower m values we apply L_, using the relation discussed in class:

L Yo =H/ll+1) —m(m — 1)y 1 = he [0y +icot 00,) Yo (27)

or

1 .
= i )
Yom-1 \/ﬁ(ﬁ gy e 1)6 [—0p +icot 004] Yy - (28)

Plugging in our function for Y33 in eq. (26) we get

/35 /1 , /105 ,,
I T Rro2i0 1n2 — 2i¢ 102 )
Y3 i \/g( 6e”*? cos 0 sin” ) 39, € oS 6 sin” 6 (29)

6



Applying eq. (28) to Y35 to get Y3, and then subsequently to Y3; to get Y3, yields
the desired functions:

30 o,

}/3’3 = - m€31¢ Sin3 0 s
105 o, .

Y50 = 32—7re2z¢ sin? @ cos 0

21 ., .
Y5 = — 6hr “sinf(5cos’f — 1)

7 3
Y50 = 4/——(bcos’ 0 — 3cosh) (30)
’ 167

I used Mathematica to make this less tedious...



