
Physics 324, Fall 2001 Solutions to problem set #4 Fri. 11/9/01

Problems chosen to be graded are marked by ?

(1) Gasiorowicz 4-4
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This implies that
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Then it is easy to see that 〈p〉 = 0, while
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(2) Gasiorowicz 4-6

a) No, the wavefunction will spread out.
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b) The probability Pn that the particle is in the nth energy eigenstate is
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For this geometry, we have
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(Sketch these wave functions and convince yourself that they look exactly like
those in figure 4-2, only shifted to the right by a/2.) So we get
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So the particle has equal probability, P1 = P2 = 4/π2 = 0.41 for being in either
the ground state or the first excited state. That is, there is an equal probability
of 4/π2 that an energy measurement will yield E1 or E2.
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