Physics 324, Fall 2001 Solutions to problem set #2 Fri. 10/19/01

Problems chosen to be graded are marked by %

*x (1) (a) We can take Az = L and therefore Ap 2> h/L. We have p = Ap so that the par-
ticle’s energy satisfies E > (Ap)?/2m 2 h?/(2mL?). Therefore Ey ~ k?/(2mL?)
is a good estimate of the ground state energy (the minimum energy the particle
can have).

(b) The velocity is v = p/m 2 Ap/m 2 h/(mL), SO Upin =~ i/ (mL).

(c) (i) m=.51 MeV/c?, L =1.0x10"" cm. Use i = 6.6x10722 MeV-s, ¢ = 3.0x10'°
Cm/s: Upin >~ (6.6 x 10722)(3.0 x 101°)2/((.51)(1.0 x 1077)) = 1.1 x 107 ¢m/s,
roughly one third the speed of light.

(ii) m = 1.0 gm, L = 10 cm. Use h = 1.0 x 107% erg-s. Then vy, ~ (1.0 x
10727)/((1.0)(10.)) = 1.0 x 1072 cm/s. That is awfully slow — in the age of
the universe (10 billion years) it would travel 3 x 107!* cm at that rate.

(2) (a) E=p?/2m+V. Write p= h/Az, x = Az, so that E = h?/(2mAz?)+Vy(Az/a)*.
Now minimize with respect to Az. The real solutions to the minimization yield

Az? = ha/v/2mVy) and E,, = /2Voh2/(a?m). You should be able to check that
this has the right dimensions.
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(b) A good sign that a particle is relativistic is when E > mc?. Using the energy
from the above, this occurs when +/2Vph2/(a?m) 2 mc?, or a < +/2Voh2/(c*m3).

(3) (a) We wish to solve
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with solution N = (p2r)~!/4. A key step was shifting the integration variable by
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Therefore
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since the first term vanishes (p is odd) and the second term is p times the nor-
malized integral. We also have
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where the first integral (p? term) was done in class, the second integral (2pp
term) vanishes, and the third term (p?) is proportional to the normalized integral.
Therefore

Ap =) — (p)? = % . (3)

In this problem I should have written “e*®*/"” instead of “e~"*/" but I am
solving the problem as written.
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where xy = h/po. You can see by comparison with ¢(p) that this ¢(z) is normal-
ized.

This wave packet represents a particle localized within a region of size ~ g = fi/pg
(actually, Az = z4/v/2), and which is moving along with average momentum p
and momentum spread Ap = py/v/2.



*x (4) (a) ¥ looks like a square wave of height N in the region —zy < x < ¢, vanishing
outside this region. Notice that it has infinitely sharp corners. To normalize,

N2 [% 9> =1, or N =1/1/2x,.
(b)
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Here I substituted integration variables & = zop/h, and I used the integral for
[ d sin®E/&? given in the problem set.

(d)
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It follows that (z) = 0, (2?) = 12/3, Az = z0/V/3.
(e)

W = / " dpple(p)? = - / " dpp™?sin® (wop/h)
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It follows that (p) = 0. However, (p®) = co. In order to make the wave function
¥ (x) have very sharp edges, we had to use a lot of high frequency components,
and so ¢(p) falls off fast enough with respect to p to be normalizable, but not fast
enough to give a finite answer for (p?). Therefore Ap = oo.

(f) Evidently, Az is finite and nonzero for this wavefunction, so AzAp = oo, which
is certainly larger than %/2, and so is consistent with the uncertainty relation.



