Assigned problems. All three are to be turned in; two will be graded and will be worth 50 points each.

1. a) Show that if \hat{A} , \hat{B} and \hat{C} are operators, then in general

$$
[\hat{A}\hat{B}, \hat{C}] = \hat{A}[\hat{B}, \hat{C}] + [\hat{A}, \hat{C}]\hat{B} .
$$

- **b**) Given that $[\hat{x}, \hat{p}] = i\hbar$, compute $[\hat{x}, \hat{p}^n]$ and $[\hat{p}, \hat{x}^n]$.
- c) Show that if $V(x)$ is a function with a convergent Taylor expansion, then $[\hat{p}, V(\hat{x})] =$ $-i\hbar dV(\hat{x})/d\hat{x}$.
- d) For the simple harmonic oscillator ladder operators \hat{a} and \hat{a}^{\dagger} , where $[\hat{a}, \hat{a}^{\dagger}] = 1$, compute both $[\hat{a}^\dagger \hat{a}, \hat{a}]$ and $[\hat{a}^\dagger \hat{a}, \hat{a}^\dagger]$.
- e) If \hat{L}_x , \hat{L}_y and \hat{L}_z are the three angular momentum operators in three dimensions. They satisfy the commutation relations

$$
[\hat{L}_x, \hat{L}_y] = i\hat{L}_z , \qquad [\hat{L}_y, \hat{L}_z] = i\hat{L}_x , \qquad [\hat{L}_z, \hat{L}_x] = i\hat{L}_y . \qquad (1)
$$

Compute the commutator $[\hat{L}_z, \hat{L}^2]$, where $\hat{L}^2 \equiv \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$.

2. a) Show that if a quantum particle is in state $|\psi, t\rangle$ which is a solution to the time dependent Schrodinger equation

$$
i\hbar \frac{d}{dt}|\psi, t\rangle = \hat{H}|\psi, t\rangle , \qquad (2)
$$

then the expectation value of any operator \hat{O} satisfies:

$$
\frac{d}{dt}\langle\psi,t|\hat{O}|\psi,t\rangle = \frac{1}{i\hbar}\langle\psi,t|[\hat{O},\hat{H}]|\psi,t\rangle
$$
\n(3)

b) A *classical* particle moving in a potential $V(x)$ obeys the following relations:

$$
\frac{dx}{dt} = \frac{p}{m}, \qquad \frac{dp}{dt} = -\frac{dV(x)}{dx}.
$$

Using eq. (3) above and the results from problem (1), show that a quantum particle with Hamiltonian

$$
\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})
$$

satisfies the analogous relations:

$$
\frac{d}{dt}\langle \psi, t | \hat{x} | \psi, t \rangle = \frac{1}{m} \langle \psi, t | \hat{p} | \psi, t \rangle , \qquad (4)
$$

$$
\frac{d}{dt}\langle \psi, t | \hat{p} | \psi, t \rangle = -\langle \psi, t | \frac{dV(\hat{x})}{d\hat{x}} | \psi, t \rangle . \tag{5}
$$

3. Consider a particle of mass m in a one dimensional harmonic oscillator potential, $V(x) = \frac{1}{2}kx^2$. Suppose that at time $t = 0$ its wavefunction is given by

$$
|\psi,0\rangle = N(|3\rangle - i|4\rangle) ,
$$

where $|n\rangle$ are the orthonormal harmonic oscillator energy eigenstates which we discussed in class.

- a) Compute N so that the state is normalized.
- b) Compute the expectation value of the position, as a function of time

$$
\langle \psi, t | \hat{x} | \psi, t \rangle \ .
$$

Hint: You do not need to know the wave functions $u_3(x)$ and $u_4(x)$ or to compute an integral to solve this problem. Express \hat{x} in terms of \hat{a} and \hat{a}^{\dagger} .

c) Compute the expectation value of the momentum, as a function of time

$$
\langle \psi, t | \hat{p} | \psi, t \rangle \ .
$$

Do your results satisfy both eq. (4) and eq. (5)?