Assigned problems. All three are to be turned in; two will be graded and will be worth 50 points each.

1. a) Show that if \hat{A} , \hat{B} and \hat{C} are operators, then in general

$$[\hat{A}\hat{B},\hat{C}] = \hat{A}[\hat{B},\hat{C}] + [\hat{A},\hat{C}]\hat{B}$$
.

- **b)** Given that $[\hat{x}, \hat{p}] = i\hbar$, compute $[\hat{x}, \hat{p}^n]$ and $[\hat{p}, \hat{x}^n]$.
- c) Show that if V(x) is a function with a convergent Taylor expansion, then $[\hat{p}, V(\hat{x})] = -i\hbar dV(\hat{x})/d\hat{x}$.
- **d)** For the simple harmonic oscillator ladder operators \hat{a} and \hat{a}^{\dagger} , where $[\hat{a}, \hat{a}^{\dagger}] = 1$, compute both $[\hat{a}^{\dagger}\hat{a}, \hat{a}]$ and $[\hat{a}^{\dagger}\hat{a}, \hat{a}^{\dagger}]$.
- e) If \hat{L}_x , \hat{L}_y and \hat{L}_z are the three angular momentum operators in three dimensions. They satisfy the commutation relations

$$[\hat{L}_x, \hat{L}_y] = i\hat{L}_z , \qquad [\hat{L}_y, \hat{L}_z] = i\hat{L}_x , \qquad [\hat{L}_z, \hat{L}_x] = i\hat{L}_y .$$
(1)

Compute the commutator $[\hat{L}_z, \hat{L}^2]$, where $\hat{L}^2 \equiv \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2$.

2. a) Show that if a quantum particle is in state $|\psi, t\rangle$ which is a solution to the time dependent Schrödinger equation

$$i\hbar \frac{d}{dt} |\psi, t\rangle = \hat{H} |\psi, t\rangle , \qquad (2)$$

then the expectation value of any operator \hat{O} satisfies:

$$\frac{d}{dt}\langle\psi,t|\hat{O}|\psi,t\rangle = \frac{1}{i\hbar}\langle\psi,t|[\hat{O},\hat{H}]|\psi,t\rangle$$
(3)

b) A classical particle moving in a potential V(x) obeys the following relations:

$$\frac{dx}{dt} = \frac{p}{m}$$
, $\frac{dp}{dt} = -\frac{dV(x)}{dx}$.

Using eq. (3) above and the results from problem (1), show that a quantum particle with Hamiltonian

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{x})$$

satisfies the analogous relations:

$$\frac{d}{dt}\langle\psi,t|\hat{x}|\psi,t\rangle = \frac{1}{m}\langle\psi,t|\hat{p}|\psi,t\rangle , \qquad (4)$$

$$\frac{d}{dt}\langle\psi,t|\hat{p}|\psi,t\rangle = -\langle\psi,t|\frac{dV(\hat{x})}{d\hat{x}}|\psi,t\rangle .$$
(5)

3. Consider a particle of mass m in a one dimensional harmonic oscillator potential, $V(x) = \frac{1}{2}kx^2$. Suppose that at time t = 0 its wavefunction is given by

$$|\psi,0\rangle = N\left(|3\rangle - i|4\rangle\right)$$
,

where $|n\rangle$ are the orthonormal harmonic oscillator energy eigenstates which we discussed in class.

- a) Compute N so that the state is normalized.
- b) Compute the expectation value of the position, as a function of time

$$\langle \psi, t | \hat{x} | \psi, t \rangle$$
.

Hint: You do not need to know the wave functions $u_3(x)$ and $u_4(x)$ or to compute an integral to solve this problem. Express \hat{x} in terms of \hat{a} and \hat{a}^{\dagger} .

c) Compute the expectation value of the momentum, as a function of time

$$\langle \psi, t | \hat{p} | \psi, t \rangle$$
.

Do your results satisfy both eq. (4) and eq. (5)?