Problem 2. (6 points) In this problem, for each wave function u;(x), us(x),...,us(x)
which is a solution to a time independent, 1-dimensional Schrodinger equation, you are to
write down the corresponding potential (V7, V5,..., Vi) that gave rise to that wavefunction.
Note: the subscript on the u(z) does not denote the energy level in this problem. Plotted are
the real parts of the u(x) wave functions. Write your answers in the boxes provided below.
Do not assume a one-to-one correspondence between the wave functions and potentials...not
all the V’s need appear in your answer, and some V’s can appear more than once.
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For ug, I gave full credit for the incorrect answer V7, since it may be hard
to distinguish the differences by eye. One point per answer.



Problem 3. (13 points)

A particle of mass m in a 1 dimensional simple harmonic oscillator potential V(z) = %ka:Q =
tmw?z? (where w = \/k/m) has the initial wavefunction

.t =0) =N (v2/0) - [3))
where |n), n = 0,1,..., are the harmonic oscillator energy eigenstates, satisfying a'a|n) =

n|n), where a' and @ are the raising and lowering operators respectively. In terms of & and
at, we have found that the Hamiltonian may be written as H = hw (&Td + %)

3 a. Find N such that |1, ¢ = 0) is properly normalized.

1= (wly) = N (2(000) — v2(0]3) - v2(3]0) + (3[3))
= NP 2+0+0+1)=3|N|?

So the correct answer 1s N = %

3 b. What is the wavefunction at later time, |, t)?

,8) = N (V2eE0tlMo) — emiE/13) )
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since E,, = hw(n + 1/2).

3 c. Compute the expectation value of the energy (1, ¢|H|1,t) in terms of w.

There are no cross terms in this matrix element, and so there is no
time dependence. (The expectation value of the energy is constant,
by energy conservation). So it is simplest to evaluate at ¢ = 0.

(0, t1H1,t) = NP [(V2P By + (<1)Es| = 2By + <F
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3 d. If you make a measurement of the particle’s energy, what possible values could you
measure?

The only possible values you could measure for the energy are
EO = %hw or E3 = %hw

3 e. What is the most probable result for a measurement of the particle’s energy?

You can read off from the wave function at ¢ = 0 (with N =
1/+/3) that there is a % probability that it is in the n = 0 state, and
a % probability that it is in the n = 3 state. So it is most probable
that you will measure Fjy = %hw for the energy.

3 f. What is the expectation value for the particle’s potential energy, (v, t|2mw?22|¢,t)?

2
Hint: Use the expression derived in class, £ = \/iw(& +at).
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“mw?a? = §mw2 ST (6 + ah)
hw
= (a*> +aa' +a'a + a'?)
hw
- (@ +2a'a+1+a')

where T used [a,a'] = 1. The a? and a'? operators change a state
In) to |n £ 2), so (0]a®0) = (0]|a*|3) = 0, etc. So

b)) = %INIQ (2(0](2a%a + 1)]0) + (3|(2aTa + 1)|3))
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(1), t|§mw2:?:2

= %(2(0+1)+(6+1)):Zhw.
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3 g. Suppose you could measure the particle’s potential energy with perfect accuracy, and
that such a measurement yields the value fiw/4. What is then the expectation value for a
subsequent measurement of the particle’s kinetic energy? (Careful!)

If you knew the potential energy with compleate accuracy, you

would know the value of Z? to arbitrary accuracy. Suppose you

measured (3mw?2?) = tmw?23, where z is some number. Then

the wave function would be spiked at z = 4-x; immediately after the
measurement. Thus by the uncertainty principle, the momentum
could be anything, and so the expectation value of the kinetic energy
would be infinite.

What about energy conservation? To measure the potential en-
ergy (and hence, the particle’s position) to arbitrary accuracy, you
needed to shine on it photons with arbitrarily short wavelength, and
hence arbitrarily high energy...you blasted the system to pieces with
infinite energy photons, so of course the kinetic energy was infinite
afterwards.

End of exam




