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1 Solving the damped harmonic oscillator

using Green functions

We wish to solve the equation

ÿ + 2bẏ + ω2
0y = f(t) . (1)

1.1 The case f(t) ∝ eiωt

First we solve the equation for f(t) = F (ω)
2π
eiωt, where F (ω) is some number:

ÿ + 2bẏ + ω2
0y =

F (ω)

2π
eiωt (2)

We guess a particular solution of the form yp = ceiωt. Plugging in this guess
in order to determine c, we find

ceiωt
(
−ω2 + 2ibω + ω2

0

)
=
F (ω)

2π
eiωt , (3)

which implies a solution for c

c =
F (ω)/2π

−ω2 + 2ibω + ω2
0

. (4)

Therefore the general solution for y with f(t) = F (ω)
2π
eiωt is

y = yh +
F (ω)/2π

−ω2 + 2ibω + ω2
0

eiωt , (5)

and yh is the solution to the homogeneous equation (ie, eq. (1) with f(t) = 0):

yh(t) = C1e
r1t + C2e

r2t , (6)

where C1,2 are arbitrary constants and r1,2 are the roots of the quadratic
equation

x2 + 2bx+ ω2
0 = 0 . (7)

In this note I am assuming r1 6= r2, so that the two exponentials in yh
represent independent solutions.
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1.2 The case f(t) =
∫
F (ω)eiωt dω2π

We now consider a general forcing function written as a Fourier transform:
f(t) =

∫
F (ω)eiωt dω

2π
. The particular solution now is just the one we found

above, similarly integrated over ω. So the general solution is

y = yh +
∫ F (ω)

−ω2 + 2ibω + ω2
0

eiωt
dω

2π
(8)

1.3 The case f(t) = δ(t− t0)
The Green function for this problem is the function G(t, t0) which satisfies[

d2

d2
t

+ 2b
d

dt
+ ω2

0

]
G(t, t0) = δ(t− t0) , G(t, t0) = 0 for t < t0 . (9)

We can solve for G by writing the Dirac δ-function δ(t − t0) in terms of its
Fourier transform, and then by using the results of the above section:∫

δ(t− t0)e−iωt = e−iωt0 =⇒ δ(t− t0) =
∫
e−iωt0eiωt

dω

2π
. (10)

Therefore, from eq. (8), with e−iωt0 replacing F (ω), we get

G(t, t0) = yh +
∫ eiω(t−t0)

−ω2 + 2ibω + ω2
0

dω

2π

= yh +

{
0 t < t0

1
r1−r2

[
er1(t−t0) − er2(t−t0)

]
t > t0

(11)

The integral I performed above in going from the first line to the second is
easy using complex analysis, hard without it. If we apply the condition that
G(t, t0) = 0 for t < t0, then we can set the constants in yh above to zero.
Therefore our Green function for this problem is:

G(t, t0) =

{
0 t < t0

1
r1−r2

[
er1(t−t0) − er2(t−t0)

]
t > t0

. (12)

1.4 Solving the general problem using Green function
techniques

Now we return to the general problem of eq. (1). We can write any function
f(t) as a sum (integral) of delta functions δ(t − t0) for different values of t0
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with different strengths:

f(t) =
∫
δ(t− t0)f(t0) dt0 (13)

Thus, since G(t, t0) is the particular solution to our differential equation with
f(t) = δ(t − t0), we can construct a particular solution for the general f(t)
by summing up (integrating) G(t, t0) for differnt t0 with weight f(t0):

yp(t) =
∫
G(t, t0)f(t0) dt0 . (14)

Note that if f(t) vanishes for t < t1 (ie, the force turns on at time t = t1),
then yp(t) similarly vanishes for t < t1 since G(t, t0) vanishes for t < t0 and
therefore G(t, t0)f(t0) vanishes for t < t1. The most general solution then is

y = yh +
∫
G(t, t0)f(t0) dt0 . (15)

The nice thing about this expression is that G(t, t0) and yh are known, so
that one need only perform the integral of your forcing function f(t0) times
the known Green function.

1.5 When is this technique useful

Note that we can solve this problem is various ways. However, when trying
to solve linear, second order, inhomogenous partial differential equations, this
method is the easiest. One can also use the method, along with something
called “perturbation theory” to solve partial differential equations which are
“almost” linear. Green functions are used extensively in many branches of
physics; we will reexamine them when we do partial differential equations
later this quarter.

3


