Example problems. Not to be turned in — solutions given in the companion volume of solved problems:

 $\begin{bmatrix} \S{3}.4: & 18, 21, 24 \end{bmatrix} \quad \Leftarrow \quad \text{Postponed until problem set 7} \\ \${10}.4: & 13, 22, 36 \end{bmatrix}$

Assigned problems. To be turned in. Problems A, B, and C below will be graded; two additional problems chosen at random from those in Boas will be graded. All graded problems are worth 20 points each. Problem D is extra credit: doing extra credit problems do not change your score, but at the end of the term can make the difference in borderline grade assignments.

 $\begin{bmatrix} §3.4: & 12, 17, 19 \end{bmatrix} \iff \textbf{Postponed until problem set 7} \\ \$10.4: & 14, 19, 34, 38 \\ \end{bmatrix}$

A. (20 points) Consider the vector $\vec{v} = (3, -4)$ in the x - y plane. Let \vec{w} be related to \vec{v} by a rotation in the x - y plane:

$$\vec{w} = R(\theta)\vec{v}$$
, $R(\theta) = \begin{pmatrix} \cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{pmatrix}$. (1)

What is the angle θ for which \vec{w} is pointing along the positive x-axis?

B. (20 points) Consider the matrix

$$M = \begin{pmatrix} a & b & 0\\ 0 & (a+b) & 0\\ b & -b & (a-b) \end{pmatrix} .$$
 (2)

where a and b are variables.

(a.) What is the condition on a and b that must be fulfilled if M^{-1} is to exist?

- (b.) Compute the eigenvalues of M.
- (c.) Compute the normalized eigenvectors of M.
- (d.) Compute a similarity transformation matrix P, such that $P^{-1}MP$ is diagonal.

C. (20 points)

- (a.) Prove that if A, B, are matrices of dimensions such that the product (AB) is defined, then $(AB)^{\dagger} = (B^{\dagger}A^{\dagger})$. Remember that for a matrix $M, M^{\dagger} \equiv (M^*)^T$. Explain why how this generalizes for more matrices: $(ABC \cdots)^{\dagger} = ?$
- (b) For the rest of this problem, you will consider the properties of a Hermitean matrix H: $H = H^{\dagger}$. Suppose the vector v is an eigenvector of H with eigenvalue λ , so that $Hv = \lambda v$. Assuming λ to be complex, what is $v^{\dagger}H$ equal to? (Hint: use the result of part (a)).
- (c) For the same Hermitean matrix H and eigenvector v as in (b), prove that all eigenvalues λ are real by considering the quantity $v^{\dagger}Hv = (v^{\dagger}H)v = v^{\dagger}(Hv)$.
- (d) Suppose that v_1 is an eigenvector of the hermition matrix H corresponding to the eigenvalue λ_1 , and v_2 is another eigenvector of H corresponding to the eigenvalue λ_2 . Prove that if $\lambda_1 \neq \lambda_2$, then $v_1^{\dagger}v_2 = v_2^{\dagger}v_1 = 0$. That means that these complex eigenvectors v_1 and v_2 are orthogonal.

D. (Extra credit) Use Mathematica to compute the trace, determinant, inverse, eigenvectors and eigenvalues of the matrix

$$M = \begin{pmatrix} 2 & 0 & 2i & 0 & 1\\ 0 & -1 & 0 & -2i & 0\\ -2i & 0 & 1 & 1 & 1\\ 0 & 2i & 1 & 0 & -1\\ 1 & 0 & 1 & -1 & -1 \end{pmatrix}$$
(3)