Due: Wed. 1/31/01

One assigned problems. To be turned in and graded.

## A. (100 points)

where

Consider light with wavelength  $\lambda$  passing through a grating with 5 narrow slits a distance a apart.



The amplitude of the light on a distance sceen, at an angle  $\theta$  from the perpendicular to the grating, is the sum of the contributions from each of the slits:

$$E = E_0 \sin \omega t + E_0 \sin(\omega t - \delta) + E_0 \sin(\omega t - 2\delta) + E_0 \sin(\omega t - 3\delta) + E_0 \sin(\omega t - 4\delta)$$
 (1)

$$\delta = 2\pi \frac{a \sin \theta}{\lambda} \tag{2}$$

The phase  $\delta$  accounts for the different number of wavelengths that fit along the paths taken by a light rays between the screen at angle  $\theta$ , and the slits through which they passed.

a. Show that

$$E(\theta, t) = E_0 \operatorname{Im} \left[ \sum_{n=0}^{4} e^{i(\omega t - n\delta)} \right]$$
 (3)

and compute it as a compact, real expression. Hint: recall the formula for finite geometric series in Chapter 1.

b. Compute the (brightness) I(t) of the light on screen given by

$$I(\theta, t) = |E(\theta, t)|^2 \tag{4}$$

c. This intensity is actually oscillating very rapidly over time. What our eye sees is the average intensity over one oscillation period,  $T=2\pi/\omega$ . Compute the time averaged intensity,

$$\langle I(\theta) \rangle = \frac{1}{T} \int_0^T I(\theta, t) dt$$
 (5)

d. Carefully plot the time averaged intensity  $\langle I(\theta) \rangle$  on the screen, as a function of angle  $\theta$ . How many bright spots (local maxima in  $\langle I(\theta) \rangle$ ) appear on the screen? Where are the dark spots? Physically, what is causing the dark spots?