Physics 227, Winter 2001

Problem set #3

Example problems. Not to be turned in — solutions given in the companion volume of solved problems:

Assigned problems. To be turned in. Problems A and B below will be graded; three additional problems chosen at random from those in Boas will be graded. All graded problems are worth 20 points each. Problem C is extra credit: doing extra credit problems do not change your score, but at the end of the term can make the difference in borderline grade assignments.

$\S{2.5}:$	47
$\S2.7:$	15
$\S2.9:$	18
$\S2.10:$	11, 21
$\S2.11:$	9
$\S2.12:$	8
$\S2.14:$	22

A. (20 points)

Suppose z(t) = x(t) + i y(t) where x(t) and y(t) are real functions of t, and that z(t) satisfies the differential equation

$$\ddot{z} + 2b\dot{z} + \omega^2 z = F e^{i\omega_0 t} , \qquad (1)$$

where b, ω and ω_0 are real parameters. What is the differential equation satisfied by x(t)? You aren't being asked to solve this differential equation, which corresponds to a damped, driven harmonic oscillator.

B. (20 points)

In an AC electrical circuit one might have an impedance $Z = R - \frac{i}{\omega C}$ and a driving voltage $V(t) = V_0 e^{i\omega t}$, where R, C, ω , and V_0 are all real parameters. The current I(t) satisfies

$$I(t) = V(t)/Z . (2)$$

Write I(t) as

$$I(t) \equiv I_0 e^{i\theta(t)} , \qquad (3)$$

where I_0 and $\theta(t)$ are real. Find I_0 and $\theta(t)$ as functions of R, C, ω, V_0 , and t.

C. (Extra credit)

Consider the function $f(\omega) = \frac{1}{\omega - \omega_0 - i\gamma}$ where ω_0 and γ are real parameters and ω is a real variable.

- a. Find the real and imaginary parts of $f(\omega)$.
- b. Use Mathematica to plot from $\omega = 0$ to $\omega = 10$ the real and imaginary parts of $f(\omega)$ for $\omega_0 = 5$, $\gamma = 1$, using the Plot, Re and Im functions. Remember that in Mathematica the $\sqrt{-1}$ is written as I, not i.

Note: Problem sets must be turned in by the end of class, or must be in David Kaplan's Physics Department mailbox by 12:20 PM on the day they are due. Solutions will be posted on the web.