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I. HAMILTONIAN

The Hamiltonian describing the neutron channel and compound nucleus system can be written in matrix form as

H =

(
Hn V
VT Hc

)
, (1)

where Hn is the neutron channel Hamiltonian, Hc is the compound nucleus Hamiltonian, and V is the coupling
matrix. Hn is derived by discretizing the radial Schrödinger equation on a spatial mesh and is given by

Hn,ij = [2t+ V (ri)]δij − tδi,j+1 − tδi,j−1 . (2)

where i, j = (1, .., Nn). Here Nn is the number of sites on the channel mesh, t = ~2/2m∆r2 with ∆r is the mesh
spacing, and ri = i∆r. V (ri) is the central Woods-Saxon potential given by

V (r) =
V0

1 + e(r−R)/a
, (3)

where R = r0A
1/3 (A is the mass number of the target nucleus) and a is the surface thickness parameter.

The internal state Hamiltonian Hc is given by

Hc,µν = (Eµ − iΓγ/2)δµν , (4)

where the spacings between nearest-neighbor energies Eµ are given by the spacings between neighboring eigenvalues of
the middle third of the spectrum of a GOE random matrix. The spacings are scaled to match the neutron resonance
mean level spacing D on average. In practice, we choose lower and upper energies E1 and ENc

= E1 +NcD (Nc is the
number of internal compound nucleus states). We then diagonalize a GOE random matrix of dimension 3Nc × 3Nc
and obtain the middle third of its eigenvalue spectrum η1, ..., ηNc

. These eigenvalues have the average spacing d,
which we determine using ηNc

− η1 ≈ Ncd. The internal state energies Eµ (µ = (1, ..., Nn)) are then take to be

Eµ =
D

d
(ηµ − η1) + E1 . (5)

Γγ in Eq. (4) is the total gamma decay width and is taken to be the same for all internal states.
The coupling matrix V is given by

Vi,µ = δi,ie(v0∆r−1/2)sµ , (6)

where ie is a fixed interaction point, v0 is a coupling parameter, and sµ is drawn from the normal distribution with
zero mean and unit variance. sµ accounts for the fluctuations of the GOE eigenvectors and is given by

sµ =

Nc∑
α=1

〈φα|ψµ〉 (7)

In Eq. (7), |φα〉 describe a fixed basis in the compound-nucleus space, and |ψµ〉 are the GOE eigenvectors. The
projection 〈φα|ψµ〉 of a GOE eigenvector |ψµ〉 onto a fixed state |φα〉 is a Gaussian random variable with mean zero
and variance 1/N , where N is the dimension of the GOE matrix. In the limit of large N , the N components 〈φα|ψµ〉
of an fixed eigenvector |ψµ〉 can be treated as independent Gaussian variables and their sum in Eq. (7) is a Gaussian
random variable with zero mean and unit variance. The ∆r dependence of the average coupling strength in Eq. (6)
is introduced to guarantee that the calculated physical observables are independent of ∆r in the continuum limit
∆r → 0 (see below).

The total dimension of the Hamiltonian (1) is Nn +Nc. The wavefunction ~u describing the system is a (Nn +Nc)-
dimensional column vector, where the top Nn components correspond to the sites of the neutron channel mesh and
the bottom Nc components correspond to the internal states.
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II. SCATTERING AMPLITUDE AND CROSS SECTIONS

We may use the Hamiltonian of Eq. (1) together with appropriate boundary conditions on the wavefunction ~u
to calculate the neutron scattering amplitude. As discussed in the main text, we impose u(0) = 0 so that the
wavefunction is regular at the origin. The asymptotic behavior at large r for a scattering solution with a real and
positive wavenumber k is

u(r)→ A(k)
[
e−ikr − Snn(k)eikr

]
, (8)

where Snn(k) is the elastic neutron scattering amplitude 1 and A(k) is an overall normalization factor. Using Eq. (8)
at the points Nn and Nn + 1, we find

u(Nn)

u(Nn + 1)
=

1− Snneik(2Nn)∆r

e−ik∆r − Snneik(2Nn+1)∆r
, (9)

where x ≡ u(Nn)/u(Nn + 1). In writing Schrödinger equation for the last mesh point Nn in the neutron channel,
we have to consider the non-vanishing term −tu(Nn + 1). Since the point Nn + 1 is not in the vector space of the
channel, it leads to an inhomogeneous equation for the scattering solution at energy E = ~2k2/2m of the form

(E −H)~u = ~h , (10)

where h(i) = −tu(Nn + 1)δi,Nn
. Inverting (10) we find

u(Nn)

u(Nn + 1)
= −tG(E)Nn,Nn

(11)

where G(E) = (E −H)−1 is the Green’s function matrix at energy E. Using Eq. (9), we obtain an expression for the
scattering amplitude

Snn = e−ik(2Nn)∆r

[
1 + tG(E)Nn,Nn

e−ik∆r

1 + tG(E)Nn,Nn
eik∆r

]
. (12)

The elastic and reaction cross sections are calculated from Snn using

σel =
π

k2
|1− Snn|2 ,

σr =
π

k2

(
1− |Snn|2

)
.

(13)

In our model, the reaction cross section is the neutron capture cross section, i.e., σr = σcapture.

III. NUMERICAL METHOD FOR FINDING THE RESONANCES

In addition to the elastic and capture cross sections, we are interested in finding the energies and widths of the
compound nucleus resonances. The complex resonance wavenumbers kr are poles of the S matrix. Thus, in principle,
we could find the resonance solutions by finding the wavenumbers at which the denominator on the r.h.s. of Eq. (12)
is zero, i.e., by solving the equation

1 + tG(E)Nn,Nne
ik∆r = 0 (14)

However, near a resonance the Green’s function G(E) becomes singular and, in practice, the numerical solution of
Eq. (14) is challenging.

As discussed in the main text, we use a mathematically equivalent method to find the resonances that is easier to
implement in practice. We impose the outgoing wave boundary condition for a resonance, u(r) → B(k)eikr at large
r when k is complex. This leads to the condition

u(Nn + 1) = u(Nn)eik∆r . (15)

1 In general we are interested in the S matrix but in the present model this matrix contains only a single number Snn (since the gamma
decay is treated by assigning an imaginary part to the internal state energies).
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Combining this boundary condition with the regularity condition u(0) = 0 and with the Schrödinger equation yields
the nonlinear eigenvalue problem

M(k)~u =
(
H− teik∆rC− E

)
~u = 0 (16)

where Cij = δi,jδi,Nn and k is assumed to be complex (in contrast to the S-matrix calculation in which k is assumed
real and positive).

We solve (16) by iterations, following a method described in Ref. [1]. We start from an initial guess kg that is close
to the resonance solution kr. Taking ~u to belong to the kernel of M(kr) and linearizing M(kr) about kg, we obtain

M(kg)~u = (kg − kr)
dM

dk

∣∣∣∣
k=kg

~u , (17)

where M′(kg) = dM
dk

∣∣∣∣
k=kg

is the derivative matrix. Eq. (17) defines a generalized eigenvalue problem that can be

easily solved since the derivative of M(k) is diagonal

M′(kg) = −i∆rteik∆rC− ~2k/m . (18)

The complex eigenvalues λ of the matrix [M′(kg)]
−1

M(kg) correspond to solutions for kg−kr. We choose the minimal
modulus eigenvalue λ̄ and obtain the iterative condition

kg+1 = kg − λ̄ . (19)

We repeat this procedure until Eq. (16) is satisfied or until a preset maximal number of iterative steps is taken. Our
condition that (16) is satisfied is that M(kr) has an eigenvalue with absolute value less than a numerical tolerance
ε = 10−12.

To use the iterative method, we must find initial guesses {kg} that are sufficiently close to the resonance solutions.
We note that the real and imaginary parts of k∆r are small for the compound nucleus resonances. Therefore, we
may well approximate the resonance solutions of (16) by expanding the exponential eik∆r to quadratic order in k∆r.
Doing this expansion yields the quadratic eigenvalue problem(

U0 − kU1 − k2U2

)
~u = 0 , (20)

where U0 = H− tC, U2 = it∆rC, and U3 = (~2/2m)− (t∆r2/2)C. Eq. (20) can be solved by linearization [2]. We
impose the additional condition

~v = k~u , (21)

and rewrite (20) as

U0~u−U1~v − kU2~v = 0 . (22)

Combining conditions (21) and (22) yields a generalized eigenvalue problem(
0 1
U0 −U1

)(
~u
~v

)
− k

(
1 0
0 U2

)(
~u
~v

)
= 0 (23)

Thus, we have simplified the problem by doubling the size of the matrices involved. It is straightforward to solve
Eq. (23) because the matrix in the second term on the l.h.s. is invertible and diagonal. Therefore, we obtain 2N
possible guesses {kg} (where N is the dimension of M(k)) as the solutions of the standard eigenvalue problem[(

0 1
U2
−1U0 −U2

−1U1

)
− k
](

~u
~v

)
= 0 . (24)

We select guesses that correspond to the middle of the resonance spectrum. In practice, we decompose the total
number of internal states Nc = Nint + 2Nbuf , where Nint is the number of resonances that we take as data from each
realization and Nbuf is the number of “buffer” internal states placed at either end of the spectrum and not taken as
data. For example, in the results shown in the paper, we have Nc = 240 total internal states, with Nint = 160 and
Nbuf = 40. Thus, we choose the Nint initial guesses that solve Eq. (24) in the middle of the internal state spectrum,
disregarding the 2Nbuf resonances at the upper and lower ends. These initial guesses converge to resonances in the
middle of the resonance spectrum. This selection method allows us to avoid the numerical artifacts that originate in
the finite band of internal states (see below).
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IV. ∆r DEPENDENCE OF THE AVERAGE COUPLING

Here we discuss the explicit ∆r dependence introduced in the coupling matrix (6). This scaling is necessary to
obtain convergence of the scattering amplitude Snn in the continuum limit ∆r → 0. Table I shows the results for the
real and imaginary parts of Snn as a function of ∆r at neutron energy of 8 keV, averaged over 20 runs of the code
for a fixed Woods-Saxon depth V0 = −44.54 MeV and average coupling v0 = 11 keV-fm1/2. We observe some weak
∆r dependence, but the changes in S̄nn are much smaller compared to the changes in ∆r.

∆r (fm) Re S̄nn Im S̄nn

0.5 0.91 -0.39

0.2 0.88 -0.43

0.1 0.88 -0.44

0.05 0.87 -0.44

TABLE I: Real and imaginary parts of the average scattering amplitude S̄nn at 8 keV neutron energy. The average is taken
over 20 runs of the code. We use the baseline values V0 = −44.54 MeV and v0 = 11 keV-fm1/2. The length of the neutron
channel mesh is Nn∆r = 30 fm.

V. FINITE BANDWIDTH EFFECTS
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FIG. 1: The average neutron resonance width Γ̄n as a function of energy (solid black histograms) is compared with the
√
E

behavior (blue solid lines) and the neutron probability density u2
E(re) (red dashed line) for 240 (left panel) and 560 (right

panel) internal states.

Here, we discuss the apparent deviation of the calculated average neutron width Γ̄n from the neutron probability
density u2

E(re) and from the
√
E form in model M3 as shown in the bottom left panel of Fig. 2 in the main text.

In our model, the internal states have a finite band width. As the average coupling strength increases, the strength
is concentrated more in the edge of the band, distorting the shape of the function Γ̄n(E). In a physical compound

nucleus, there are additional states above our band edge. In Fig. 1, we compare Γ̄n with the
√
E behavior and the

neutron probability density for 240 internal states (which corresponds to model M3 shown in the paper), and for 560
internal states. With more internal states, the apparent deviation essentially disappears. The reduced chi-squared
value for the case of 560 internal states for reduction B is χ2

r = 1.1, indicating that the PTD fits well the reduced

widths extracted with the
√
E assumption. We conclude that the apparent deviation of the average neutron width



5

from
√
E in model M3 is a purely numerical effect.
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