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1. GCM/GOA

The small-amplitude limit of the Generator Coordinate Method in the Gaussian Over-
lap Approximation (GCM/GOA) is identical to RPA when the Hamiltonian is separable
[1],[2]. In this note we go through the derivation, including the formula for the ground-state
correlation energy, and extending the Hamiltonian to include a time-odd component.

The GCM states are denoted by |¢). The necessary overlaps are parameterized in the
GOA as
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where hgo are functions of ¢ = (¢ + ¢’)/2 only. We shall also restrict ourselves to the

small amplitude limit about ¢ = 0. Then except for an inconsequential constant term the

Hamiltonian expression can be expanded as
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where now hy is a constant. With all these assumptions the system is harmonic. Thus, the

ground state wave function will have the form
U(g) =e 7.
All the needed integrals will be of the form
(M) = [ dg [ dg'e 0 |0lg)

and since they are Gaussian integrals they are easy to do. The results are
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We now minimize F(3) with respect to . The stationary condition dF/df = 0 gives the

condition
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This has a solution in the physically allowable domain (5 > 0) provided
€
hQ > Z

Otherwise, the best one can do is to take the state at ¢ = 0 for the full wave function.
Inserting the value of # at the minimum into the expression for the energy, we obtain the

GCM/GOA result for the correlation energy,
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Now let us calculate the excitation energy. Assume the wave function to have the form

2

U(g) = ge 7,
and again minimize the expection value of the Hamiltonian with respect to 3. The overlap
is
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The expection of the Hamiltonian is
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The ratio r = (V|H|¥)/(V|¥) is minimized with respect to [ using Mathematica, with a
statement like
Solve[D[r,b] ==0, b]
The resulting 3 is the same as for the ground state , given by eq. (2). Substituting in the

energy equation, we find
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The excitation energy is then given by

1
E,—FEy= a\/ ehs. (4)



2. RPA

We turn now to mean-field theory and RPA. We start with a mean-field ground state |0).
Adding some external field to the Hamiltonian, there is a new mean-field state. We write

the new state as
lq) = N(q) exp(qQ")|0)

where Qf is some linear combination of particle-hole opeators Qf = > oh cpha;gah and N(q)
is a normalization factor. We now make the boson approximation [Q, Q'] = 1 which allows
one to calculate all the needed expection values. First, the normalization is found to be
N(q) = e, Next, the overlap

(¢'lg) = e,

Thus, when we apply eq. (2), we will have oo = 1/2.
Now for the Hamiltonian. Taking a single ph state generated by QT, the RPA Hamiltonian

is simply the quadratic form,
v
H=e,Q'Q + 5((@)2 +Q%) +0Q'Q (5)

The RPA equation is
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Its eigenvalues are
WRPA — :|:\/ <€ph -+ 2U>€ph. (7)

Now we find the GCM/GOA Hamiltonian corresponding to eq. (5). To evaluate matrix

elements of H in the GCM states, it is convenient to use the identity
Q.e7] = ger"
It is then easy to show
(d1Q'Qla) = d'a(d|a)
(d'1Q%q) = ¢*{d|a),
etc. The Hamiltonian matrix elements are then
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Rewrite this in terms of ¢ and ¢ — ¢: q¢' = @ — (¢ —¢)*/4 and ¢®> + ¢* =23 + (¢ — ¢')*/2.
We then identify the terms in the GOA parameterization:

€
€ = € + 20, hQZ%h.

In terms of the variables €., v, the condition for the existence of a nontrivial ¥ is simply
v < 0 (only attractive interactions benefit from the GCM/GOA treatment).

Inserting the expressions for € and hs in eq. (4), we find that the GCM/GOA excitation
energy is equal to wrp4. The ground state energy in the GCM/GOA is

1 1
FE = —i(eph + ’U) + iy/Eph + 21})6ph.

This can be recognized as identical to the value obtained from RPA formula for the corre-

lation energy,
1
Erpa = Q(Z WrpA — trA)

Finally, we ask, does the GCM/GOA still work when the interaction has a time-odd
component? To address this question, let us generalize the Hamiltonian eq. (2a) by giving

different strengths, vi, v, to the two interaction terms,
U1
H = e @1Q + S((Q) + Q) +:Q1Q.

This introduces a time-odd component in the interaction given by (v; — v2)(Q" — Q)?. The

RPA matrix becomes
rph + Vg U

—U1 —€ph — U1

which has an eigenfrequency

WRPA = \/(Gph + v+ ’Ug)(eph + vy — Ul).

As before, we construct the GCM using only the time-even field QT + ). The Hamiltonian

matrix element has the same form as before with the parameters € and hy given by

€ = €pp + V1 + U2, ho = (e, + 02 —v1)/2.

Inserting this in eq. (4), we find the GOA excitation energy still agrees with the RPA value.
Thus, a time-odd field does not seem to be needed in the GCM to generate the needed



configurations for the RPA excitation energy.
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