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1. GCM/GOA

The small-amplitude limit of the Generator Coordinate Method in the Gaussian Over-

lap Approximation (GCM/GOA) is identical to RPA when the Hamiltonian is separable

[1],[2]. In this note we go through the derivation, including the formula for the ground-state

correlation energy, and extending the Hamiltonian to include a time-odd component.

The GCM states are denoted by |q〉. The necessary overlaps are parameterized in the

GOA as

〈q′|q〉 = e−α(q−q′)2

〈q′|H|q〉
〈q′|q〉 = h0 − h2(q − q′)2

where h0,2 are functions of q̄ = (q + q′)/2 only. We shall also restrict ourselves to the

small amplitude limit about q = 0. Then except for an inconsequential constant term the

Hamiltonian expression can be expanded as

〈q′|H|q〉
〈q′|q〉 ≈ ǫq̄2 − h2(q − q′)2 (1)

where now h2 is a constant. With all these assumptions the system is harmonic. Thus, the

ground state wave function will have the form

Ψ(q) = e−βq2

.

All the needed integrals will be of the form

〈Ψ|M |Ψ〉 =
∫

dq
∫

dq′e−β(q2+q′2)〈q′|M |q〉

and since they are Gaussian integrals they are easy to do. The results are

〈Ψ|Ψ〉 =
π√

2βα + β2

E ≡ 〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

ǫ

4β
− h2

2α + β
.
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We now minimize E(β) with respect to β. The stationary condition dE/dβ = 0 gives the

condition
α

β
=

√

h2

ǫ
− 1

2
. (2)

This has a solution in the physically allowable domain (β > 0) provided

h2 >
ǫ

4
.

Otherwise, the best one can do is to take the state at q = 0 for the full wave function.

Inserting the value of β at the minimum into the expression for the energy, we obtain the

GCM/GOA result for the correlation energy,

E0 =
1

2α
(− ǫ

4
− h2 +

√

h2ǫ) = − 1

2α

(√
ǫ

2
−
√

h2

)2

(3)

Now let us calculate the excitation energy. Assume the wave function to have the form

Ψ(q) = qe−βq2

,

and again minimize the expection value of the Hamiltonian with respect to β. The overlap

is

〈Ψ|Ψ〉 =
π√

2βα + β2

(

1

4β
− 1

4(2α + β)

)

.

The expection of the Hamiltonian is

〈Ψ|H|Ψ〉 =
π√

2βα + β2

(

3ǫ

16β2
− (

ǫ

4
+ h2)

1

4β(2α + β)
+

3h2

4(2α + β)2

)

.

The ratio r = 〈Ψ|H|Ψ〉/〈Ψ|Ψ〉 is minimized with respect to β using Mathematica, with a

statement like

Solve[D[r,b] ==0, b]

The resulting β is the same as for the ground state , given by eq. (2). Substituting in the

energy equation, we find

E1 =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 = − 1

8α
(ǫ − 12

√

ǫh2 + 4h2).

The excitation energy is then given by

E1 − E0 =
1

α

√

ǫh2. (4)
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2. RPA

We turn now to mean-field theory and RPA. We start with a mean-field ground state |0〉.
Adding some external field to the Hamiltonian, there is a new mean-field state. We write

the new state as

|q〉 = N(q) exp(qQ†)|0〉

where Q† is some linear combination of particle-hole opeators Q† =
∑

ph cpha
†
pah and N(q)

is a normalization factor. We now make the boson approximation [Q,Q†] = 1 which allows

one to calculate all the needed expection values. First, the normalization is found to be

N(q) = e−q2

. Next, the overlap

〈q′|q〉 = e−(q−q′)2/2.

Thus, when we apply eq. (2), we will have α = 1/2.

Now for the Hamiltonian. Taking a single ph state generated by Q†, the RPA Hamiltonian

is simply the quadratic form,

H = ǫphQ
†Q +

v

2
((Q†)2 + Q2) + vQ†Q (5)

The RPA equation is

[

A B

−B −A

](

Y

X

)

=

[

ǫph + v v

−v −ǫph − v

](

Y

X

)

= ω

(

Y

X

)

(6)

Its eigenvalues are

ωRPA = ±
√

(ǫph + 2v)ǫph. (7)

Now we find the GCM/GOA Hamiltonian corresponding to eq. (5). To evaluate matrix

elements of H in the GCM states, it is convenient to use the identity

[Q, eqQ†

] = qeqQ†.

It is then easy to show

〈q′|Q†Q|q〉 = q′q〈q′|q〉

〈q′|Q2|q〉 = q2〈q′|q〉,

etc. The Hamiltonian matrix elements are then

〈q′|H|q〉
〈q′|q〉 = ǫphqq

′ +
v

2
(q2 + q′2) + vqq′.
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Rewrite this in terms of q̄ and q − q′: qq′ = q̄2 − (q − q′)2/4 and q2 + q′2 = 2q̄2 + (q − q′)2/2.

We then identify the terms in the GOA parameterization:

ǫ = ǫph + 2v, h2 =
ǫph

4
.

In terms of the variables ǫph, v, the condition for the existence of a nontrivial Ψ is simply

v < 0 (only attractive interactions benefit from the GCM/GOA treatment).

Inserting the expressions for ǫ and h2 in eq. (4), we find that the GCM/GOA excitation

energy is equal to ωRPA. The ground state energy in the GCM/GOA is

E = −1

2
(ǫph + v) +

1

2

√

ǫph + 2v)ǫph.

This can be recognized as identical to the value obtained from RPA formula for the corre-

lation energy,

ERPA =
1

2
(
∑

ωRPA − trA)

Finally, we ask, does the GCM/GOA still work when the interaction has a time-odd

component? To address this question, let us generalize the Hamiltonian eq. (2a) by giving

different strengths, v1, v2 to the two interaction terms,

H = ǫphQ
†Q +

v1

2
((Q†)2 + Q2) + v2Q

†Q.

This introduces a time-odd component in the interaction given by (v1 − v2)(Q
† − Q)2. The

RPA matrix becomes
[

ǫph + v2 v1

−v1 −ǫph − v1

]

which has an eigenfrequency

ωRPA =
√

(ǫph + v1 + v2)(ǫph + v2 − v1).

As before, we construct the GCM using only the time-even field Q† + Q. The Hamiltonian

matrix element has the same form as before with the parameters ǫ and h2 given by

ǫ = ǫph + v1 + v2, h2 = (ǫph + v2 − v1)/2.

Inserting this in eq. (4), we find the GOA excitation energy still agrees with the RPA value.

Thus, a time-odd field does not seem to be needed in the GCM to generate the needed
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configurations for the RPA excitation energy.
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