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The (p, n) reaction and the nucleon-nucleon force 

G F Bertscht and H EsbensenS 

+ Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, 
MI 48824, USA 
# Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA 

Abstract 

The (p, n) charge exchange reaction is a powerful tool of nuclear structure physics, 
with spectroscopic characteristics that are closely related to the free interaction between 
nucleons. At proton energies in the range of 150-500 MeV, the interaction probes the 
spin dynamics in the charge exchange process and is particularly sensitive to nuclear 
pionic fields. At low energies, say less than 50 MeV bombarding energy, the reaction 
also probes the isovector density. An outstanding success of the reaction as a structural 
probe is the elucidation of the Gamow-Teller strength function in the nuclear excitation 
spectrum. However, the total strength found falls short of sum rule predictions by 
about 40%. Explanations of this quenching have been advanced along two lines, based 
on subnuclear degrees of freedom or on configuration mixing into high continuum 
states. Detailed theoretical arguments support the importance of configuration mixing. 
The subnuclear degrees of freedom may be comparable, but a decisive test is lacking. 

This review was received in May 1986. 
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1. Introduction 

Inelastic scattering of nucleons from nuclei has provided much information about 
nuclear structure. The reaction has large cross sections, and  delicate studies are 
possible, varying the energy and momentum transfer to the target independently. The 
nucleon interaction has several couplings that allow many different kinds of excitations 
to be investigated. One important interaction of fundamental interest is the pion 
coupling to nuclear states. The pion itself is not the best probe, however, because the 
kinematics of the absorption or emission process limits which states can be studied. 
Inelastic nucleon scattering can probe all states at  low excitation, and  the part mediated 
by the virtual pion field can be emphasised. Pionic interactions are important in the 
charge exchange reaction because charged pions can be exchanged between the 
projectile nucleon and the target, while much of the remaining interaction at small 
momentum transfers is not mediated by charged mesons. Other probes that interact 
via the electroweak field are more precise because the interaction is a well understood 
perturbation. However, many aspects of nuclear structure are not accessible to these 
probes, for reasons of restricted couplings, small cross sections or  kinematic limitations. 

Closely related to the pion field is the axial vector current of the weak interaction. 
This is the field that governs the Gamow-Teller beta decay. Its divergence is propor- 
tional to the pion field, according to a phenomenological relationship of strong 
interaction physics. Our present knowledge of the Gamow-Teller transition strength 
in nuclei is due  primarily to nucleon scattering. Beta decay has a narrow energy 
window that misses the largest states in the spectrum. These states are only found 
experimentally by the charge exchange nucleon scattering reactions. 

There is always a difficulty in using strongly interacting projectiles to probe structure. 
The various aspects of the collision process must be well understood before quantitative 
information about target properties can be extracted. First of all, the primary interaction 
between the projectile and  the constituents of the target must be known. Fortunately 
for nuclear scattering, the empirical knowledge of the interaction deduced from 
extensive studies of free nucleon-nucleon scattering seems to be adequate for the needs 
of nuclear structure. The phase shift representation provides the meeting ground 
between the phenomenology of nucleon-nucleon scattering and  the interactions used 
in more complicated circumstances. The description of the free interaction is the topic 
of $ 2 of the review. 

Given the fundamental interaction, the next task is to find the scattering on complex 
nuclei. All analyses from this point are based on the distorted wave impulse approxima- 
tion ( D W I A ) .  The D W I A  approach begins by separating the scattering problem into a 
reaction part and  a target structure part. The reaction aspect is solved approximately 
so that the target structure information can be extracted directly from experiment. In  
fi 3 we review the basic ingredients of the D W I A .  

The target structure part of the reaction is conveniently described in the response 
function formalism of many-particle quantum mechanics. The charge-changing interac- 
tion that is manifest in the projectile-target interaction also influences the target 
response. In  $ 4  we discuss the interaction in a nuclear medium. This is considerably 
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more complicated than the projectile interaction for high-energy particles, because the 
medium has a strong effect on the interaction. The main theoretical lines to discuss 
this, and the qualitative results, are given in is 4. 

The nuclear response to the charge-changing interaction is reviewed in is 5. The 
response is particularly concentrated in energy for probes that are spatially uniform, 
carrying no angular momentum. For the spin-independent response, the excitation is 
a narrow state known as the isobaric analogue state ( I A S ) .  It was first seen as a narrow 
state high in the continuum by means of the (p, n) reaction (Anderson and Wong 
1961). For the response to spin-flip interactions, the strength is concentrated in a peak 
known as the Gamow-Teller (GT) resonance. This resonance was also discovered using 
the (p,  n) reaction (Doering et a1 1975). 

There are a number of useful theoretical techniques for treating the nuclear response. 
One very successful method is based on mean field theory. This is a useful approach 
for nuclei whose wavefunctions are reasonably approximated by a single Slater deter- 
minant. For nuclei with more complicated wavefunctions, diagonalisation of a large- 
dimensioned Hamiltonian matrix is the most reliable method to get details of the 
response. For either case, some simple properties can be deduced from sum rules. In 
particular, the total GT strength is bounded by a simple sum rule. 

We shall find in 0 6 that only 60% of the predicted GT strength is observed. The 
theoretical implications are also discussed. Subnuclear degrees of freedom, including 
pions and  the delta isobar excitation of the nucleon, may act to quench the strength 
in the spectroscopic region. Also, configuration mixing may shift the strength from 
low excitation energies to much higher energies, where it would be difficult to observe 
with the (p,  n )  reaction. As we shall see, the present experimental data d o  not permit 
a definitive answer about the source of the quenching. Finally, we also discuss other 
charge exchange measurements that complement the (p,  n) cross section measurements 
and provide further information on the charge-changing nuclear response. 

2. Free nucleon-nucleon interaction 

The interaction between two nucleons is rather complicated to describe, because in 
principle there are several independent amplitudes, and each of them is a function of 
scattering angle and energy. The scattering of nucleons is characterised by a quantity, 
the t matrix, which we shall call the free nucleon interaction. We shall use this word 
in the sense of an effective interaction that describes the relative wavefunction at large 
distances without requiring a detailed model of the behaviour at short distances. This 
interaction is to be clearly distinguished from the nucleon-nucleon potential, which 
is only useful when incorporated into a wave equation. Potentials will eventually be 
needed to determine the effects of the nuclear medium on the interaction, and we will 
discuss that in D 4. But the t matrix interaction and  effective interactions are of central 
importance to nuclear reaction theory. 

Nucleon-nucleon scattering is empirically described by the phase shifts in the 
partial wave expansion of the scattering amplitude. Intensive studies of nucleon- 
nucleon scattering have provided us with quite reliable partial wave phase shifts up 
to 1 GeV (Arndt et a1 1983). Once all the phase shifts are specified, the interaction 
between nucleons in free particle states is determined. This interaction can be expressed 
in two equivalent forms, the scattering amplitude M or  the r matrix. These quantities 



The ( p ,  n) reaction and the nucleon-nucleon force 61 1 

are related by 

where p is the momentum in the centre-of-mass frame. The scattering matrix M has 
the dimension of length, and the t matrix has the dimension of a potential in momentum 
space, i.e. energy times length cubed. The t matrix is very useful in applying the DWIA 

to inelastic nucleon-nucleus scattering. 
There are five independent amplitudes for each scattering angle and isospin channel 

(Wolfenstein and Ashkin 1952). A representation of M convenient for nuclear reactions 
is given by MacGregor et a1 (1960), who also give the formulae to obtain M from the 
phase shifts. They first define a set of amplitudes R in the partial wave representation, 
i.e. the orbital angular momentum / of the two particles is coupled to the total spin s 
to form a total angular momentum j .  For the channels that are not mixed, namely the 
singlet (s  = 0) and the triplet (s  = 1) channels with j = /, R is given by 

(2.2) 
For the channels that mix by the tensor force, namely the triplet channels with 1 = j - 1 
and 1 = j + 1, the R amplitudes are defined in terms of the nuclear ‘bar’ phase shifts as 

RI, = exp(2i8,,) - 1. 

(2.3) 

Arndt et a /  (1983) have generalised these expressions for R to include the effect of 
inelasticity, which becomes important at laboratory energies above 300 MeV. The 
corrections for Coulomb phase shifts in proton-proton scattering have been described 
by Stapp et a1 (1957). The next step is to define the scattering amplitude M in a 
representation specifying the components m, and m: of the total spin s along the beam 
axis. It consists of the singlet amplitude M,, and the triplet amplitudes M,,,*,>. The 
relations to the R amplitudes in terms of associated Legendre functions are given in 
table 1, which we quote from table I1 of MacGregor er a1 (1960) with a restored 
consistent sign convention. 

A more convenient representation of M for inelastic scattering is as a sum over 
the spin operators of the two particles, the so-called Wolfenstein representation. This 
separates amplitudes that induce spin excitations in the target from those that are spin 
independent. We follow the notation of MacGregor et a/ (1960) and write this as 

= + c c ( a l N  + a 2 N ) +  m a l N a 2 N  + ( g - h ) a l K a 2 K  +(g+ h ) c l P a Z P .  (2.4) 
The subscripts 1 and 2 refer to the two nucleons, N is the direction perpendicular to 
the scattering plane, K is along the momentum transfer and P is along the third 
coordinate axis ( P  = K x N ) ,  which becomes the beam direction for zero momentum 
transfer. Spin-independent excitations are induced by the amplitudes a and c, while 
spin excitations require the amplitudes c, m, g or h. The relation between the M 
amplitudes in table 1 and the Wolfenstein representation is (MacGregor et a/ 1960) 

a=: (2M, ,+MoO+M,, )  

c = - ( MI 0 - M” I ) 

m = ~ ( - 2 M l _ I + M 0 0 - M , , )  

g = a  (MI 1 + MI-1 - M Y T )  

iJZ 
4 

(2.5) 
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Table 1. 

(MlO+ MO,). (MI 1 - MI - 1 - Moo) = - 
1 42 h =- 

4 COS e 4 sin 0 

The two expressions for h show that the six matrix elements of M given in table 1 are 
related, so that there are only five independent amplitudes, as in the Wolfenstein 
representation. 

There is yet a third representation of the scattering matrix that has recently received 
attention. This is based on the Dirac wavefunctions for the nucleons, considered as 
free particles obeying the Dirac equation. The matrix M is then defined in the combined 
spin space of the Dirac spinors for both particles. There are five relativistic invariants 
that can be formed from the Dirac matrices. The scattering matrix therefore has the 
same number of degrees of freedom as in the representation mentioned above, even 
though it is expressed in a much larger matrix space, since the Dirac wavefunctions 
have four components. Specifically, the Dirac representation is (McNeil et a1 1983) 

(2.6) 

where the different terms transform in the space of each particle as a scalar, vector, 
tensor, pseudoscalar and  axial vector respectively. McNeil et a1 display the matrix to 
transform from this representation to the Wolfenstein representation. Other invariants 
can be formed combining Dirac matrices with momentum vectors, as was done in the 
Wolfenstein representation using Pauli matrices and direction vectors. These can be 
included with a view to an  improved description of the nucleon-nucleus interaction, 
but the transformation is then no  longer unique (Tjon and Wallace 1985a). 

5 1 * 5  M = Fs + F”Y t Y*+ + F,ut”a*/,, + F,Y? Y; + FAY i Y I Y2 Y 21* 



The ( p ,  n )  reaction and the nucleon-nucleon force 613 

2.1. Spin-isospin representation 

The different modes of excitation in inelastic nucleon-nucleus scattering are charac- 
terised by the spin S and  the isospin T of the target excitation. We shall discuss the 
connection between elastic nucleon-nucleon scattering and inelastic nucleon-nucleus 
scattering in more detail in the following sections, but it is convenient here to present 
the elastic nucleon-nucleon scattering in a representation that is associated with the 
excitation of target modes. From the elastic amplitudes for proton-proton ( &Ipp) and 
proton-neutron ( Mp,) scattering we therefore construct an isoscalar ( T = 0) and an 
isovector ( T  = 1) amplitude: 

MT=O= ( M p p +  Mpn)/2 MT=l= (Mpp-Mpn)/2. (2.7) 
These scattering amplitudes are again parametrised as in equation (2.4) in terms of 
the Pauli spin matrices of the two nucleons. Note that this isospin representation is 
different from the isospin of the two-nucleon system that is normally used to describe 
nucleon-nucleon scattering. 

We now give the cross sections associated with the different spin-isospin channels. 
The isospin dependence is suppressed in the notation, since i t  enters trivially via the 
constructions in equation (2.7). For S = 0, i.e. no  spin flip of the target nucleons, the 
only part of M that contributes is M,=, = a + c v I N ,  where the subscript 1 refers to the 
projectile. Thus we obtain the cross section 

There are three contributions to S = 1 excitations, namely a longitudinal, with the 
spin transfer along the momentum transfer direction K ,  

and two transverse; one in the scattering plane along the P direction, 

and one perpendicular to the scattering plane in the N direction, 

The total S = 1 cross section is the sum 

(2.9b) 

( 2 . 9 ~ )  

(2.10) 

The so-called spin-flip cross section, measured for example by Nanda et a1 (1983), 
includes all spin excitations in the scattering plane: 

(g) = lg - hi2+ l g +  hi2 
S-f 

(2.11) 

The nuclear responses associated with spin excitations in the longitudinal direction, 
equation (2.9a), and in the in-plane transverse direction, equation (2.9b), have been 
studied by Carey et a1 (1984). 

The equations given above for the spin-dependent cross sections cannot immediately 
be used for (p, n )  exchange reactions. In this case we have to perform both a spatial 



614 G F Bertsch and H Esbensen 

exchange and a spin exchange in the pn scattering amplitude. The spatial exchange 
replaces the scattering angle 0 by T - 0 in the partial wave expansion. The spin 
exchange alters the sign of the singlet part of the scattering amplitude, whereas the 
triplet part is unchanged. If the nucleon-nucleon interaction is charge independent, 
and in particular independent of the Coulomb interaction, one finds that the elastic 
(p,  n) charge exchange cross sections are identical to four times those given above for 
the T = 1 isovector channel; the only difference is that the longitudinal and the 
transverse in-plane, i.e. the K and P directions, are interchanged. 

2.2. Empirical properties of the free t matrix 

The t matrix is the most convenient representation of the interaction for application 
to inelastic scattering, so we shall discuss the physical properties of the empirical 
nucleon-nucleon interaction in terms of the t matrix. It is related to the scattering 
amplitude M by the simple numerical factor given in equation (2.1). The spin and 
isospin decomposition of the t matrix interaction is therefore proportional to the 
decomposition of the scattering amplitude discussed in the previous section. We shall 
use the following notation for the t matrix interactions associated with the different 
spin-isospin excitations of the target: to for isoscalar ( T  = S = 0), t ,  for spin-isoscalar 
( T = 0 ,  S =  l) ,  t ,  for isovector ( T =  1, S=O) and t,,, for spin-isovector ( T = S =  1)  
excitations. An extensive study of the t matrix and  its representation by an  effective 
interaction in coordinate space has been made by Love and Franey (1985). We display 
in figure 1 the t matrix for zero-degree scattering, which has only three degrees of 
freedom for each isospin (one singlet and two triplet, namely along the beam axis and 
perpendicular to the beam). This t matrix was obtained from the Arndt phase shifts 
for j < 7 (Arndt et a1 1983), supplemented with phase shifts from one-pion exchange 
in higher partial waves ( j  > 6). 

The most important feature of the t matrix at low energies is the large attraction 
in the scalar amplitude and  the much smaller repulsion in the other amplitudes. At 
the lowest energies, the interaction gives a bound state in the coupled 3 S ,  +3D, channel 
and a quasi-bound state in the 'So channel. Then a rough approximation to the t 
matrix interaction is a short-range attraction that does not depend much on the spin 
coupling. Such an  interaction has the qualitative features noted above for the target 
excitation amplitudes, namely a strong isoscalar attraction and weak repulsion in the 
three spin and  isospin channels. The repulsive amplitudes at low energy can be viewed 
as exchange effects of the intrinsically attractive interaction (see below). As the energy 
increases, the scalar channel attraction decreases and reaches a minimum around 
300MeV. At higher energies the scalar t matrix increases in magnitude due to a 
growing amplitude from inelastic processes. 

The isovector interaction t ,  starts out repulsive and decreases rapidly at higher 
energies. This behaviour is qualitatively understood as follows. There is no meson 
that couples strongly to  the isovector density, so the interaction will be weak at higher 
energies. At low energy, however, the exchange interaction from other parts of the 
interaction contribute to this channel. For example, a pion exchanged with a momen- 
tum of the beam momentum produces an  amplitude in the isovector channel as well 
as in other channels. The effect is important at low energies but disappears as the 
beam momentum increases. 

The spin-isovector interaction t,,, is the most important component of the charge- 
changing interaction at all but the lowest energies. The spin longitudinal component 
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0 

Figure 1. Energy dependence of different components of the t matrix for free nucleon- 
nucleon scattering at zero momentum transfer. The spin-isospin representation is associ- 
ated with target excitations. 

t,& (i.e. the spin transfer is along the momentum transfer direction) is fairly constant 
with a modulus of about 150 MeV fm’. This may be roughly understood in terms of 
the direct pion exchange interaction. In the pure one-pion exchange potential model 
the amplitude as a function of momentum transfer q is 

(2.12) 

where mrr is the pion mass and 

This vanishes for forward scattering, contrary to the empirical t matrix. However, the 
amplitude (2.12) is a Born approximation, which is not valid for strong potentials. 
The potential is strong at small distances, so it is convenient to convert it to coordinate 
space and  solve the Schrodinger equation to find the t matrix. The coordinate space 
decomposition can be anticipated by writing the q dependence of Vo”E as 

+fa ,  ‘U?.  (2.13) 

The first term is the ordinary Yukawa interaction and the second term is the tensor 
interaction. The third term is a contact interaction which in coordinate space becomes 
a delta function at the origin. When the Schrodinger equation is solved, the delta 
function at the origin has no effect on the wavefunction. Indeed, other short-range 
repulsive interactions will keep the particles apart, so this term in the pionic interaction 

(a,.q)(a* - 4 )  m2, a, a U 2  ~ (a, 4 ) ( a 2  * 4) -h2% - U2 - 
q2+ mZ, 3 q2+mZ, q 2 +  mZ, 
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will not be felt. I f  we assume that the finite-range parts of the interaction (2.13) are 
well enough behaved to apply the Born approximation, the end result is that the contact 
term is ineffective. The remaining part of the direct interaction is 

(2.14) 

This has a value of 133 MeV fm' at q =0, which is the same order of magnitude as 
the empirical t matrix at that momentum transfer. Also, it is relatively independent 
of energy, suggesting that the one-pion exchange interaction is responsible for most 
of the physics of the excitation process in the longitudinal spin-isovector channel. 

It is interesting to look at the ratio of the f k 7  to the t ,  interaction strength, as this 
will show the selectivity of the scattering for spin or spin-independent excitations. 
This is shown in figure 2. As first pointed out by Love and Franey (1981, 1983), this 
ratio peaks at an energy of about 300 MeV, making this a good beam energy to study 
spin excitations in (p, n )  reactions. Figure 2 also shows the empirical ratio extracted 
from comparison of excitation cross sections on nuclear targets. This will be discussed 
in 33. 

161 I I +I I I I I I I I 

/ 
I I I I I I I I d  

0 200 400 600 800 1000 
E, [MeV)  

Figure 2. Energy dependence of the ratio of the isovector spin-longitudinal and  the isovector 
t matrix interactions at  zero momentum transfer. The full curve is based on the Arndt et 
a! (1983) phase shifts supplemented by one-pion exchange for the high partial waves. The  
data points, obtained from Alford el a /  (:986), are  determined by comparing the forward- 
angle exchange cross sections for nuclear states with known properties. (Used with the 
permission of the  authors prior t o  publication.) 

Because the nuclear interaction has a tensor force component, the S = 1 amplitudes 
depend on orientation, cf equations ( 2 . 9 ~ - c ) .  For forward scattering, the orientations 
along the beam and perpendicular to the beam direction are independent, whereas the 
longitudinal direction and  the transverse direction perpendicular to the scattering plane 
become indistinguishable in this limit. The t matrices with the spin oriented along the 
beam direction are shown in figure 3. The magnitudes are comparable with the 
interactions in other spin directions. The fact that there is some difference shows that 
the tensor interaction can play some role even at zero degrees. 
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I I I I 

I I I I 
200 600 

Tlob ( M e V )  

3 

Figure 3. Energy dependence of rhe spin-transverse isoscalar and isovector I matrix at 
zero momentum transfer. The transverse spin operators are parallel to the beam direction. 

2.3. The t matrix at Jinite q 

The cross section at low energy is close to isotropic apart from Coulomb effects, 
consistent with the rough characterisation of the t matrix interaction iis a short-range 
attraction. The angular distribution for identical particle scattering remains flat up  to 
fairly high energies, but this is deceptive because the various spin amplitudes contribute 
differently at  different scattering angles. In charge exchange scattering, there is a peak 
in the differential cross section at zero degrees (i.e. at 180" in elastic np  scattering) 
that persist to multi-GeV energies. An example of this peaking for small momentum 
transfers in charge exchange is shown in figure 4, which displays the differential cross 

1 I I 1 I I 1 
0 60 120 180 

ecn  (deg)  

Figure 4. Elastic np scattering at 200 MeV. The data are from Kazarinov and Simonov 
(1963), and the calculated curve is obtained from the Arndt et al (1983) phase shifts. Note 
the sharp peak at 180" scattering. 
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section for np  scattering at 200 MeV in the laboratory. The variation of the cross 
section near q = O  (i.e. near 180” in figure 4) is associated with one-pion exchange but, 
as we saw in the previous section, the behaviour is not as simple as the Born approxima- 
tion expression. The naive pion exchange process is zero at q = 0, but the rescattering 
and short-range correlations make the amplitude finite and give a q dependence like 
(2.14). The amplitude is sharply peaked at q = 0 for the spin component parallel to 
q. This is the longitudinal spin-flip amplitude; in the Wolfenstein representation, 
equation (2.4), it is given by the combination of amplitudes g - h. Figure 5 ( a )  shows 
the longitudinal isovector t matrix t k ,  as a function of q. The f matrix is repulsive for 
small q, and changes sign at  larger q. 

There are three other spin amplitudes transverse to q when q is finite. In order to 
discuss the physics underlying the transverse spin-isovector t matrix, it is convenient 
to regroup the transverse part of (2.4) and express it as 

M fr, = C(T? ,N + ;( W I  + g + h )(a, N 0 2  N + (TI p ( ~ z  p ) + i( W I  - g - h )((TI (72 N - pi P ( T ~  p ). (2.15) 

The three corresponding t matrix interactions are shown in figure 5 ( b ) .  The first term 

- - 
ibl D 

I 

i- - - 

- 100 - 

- 50 - 

\ 
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is associated with the spin-orbit interaction and  is denoted by so in the figure. The 
second term (denoted by p )  can arise from the p meson exchange, using the magnetic- 
type coupling (a, x q )  - (a2 x q )  to the p meson. The last term (denoted by U) can 
only arise from non-local interactions and exchange effects. The p-like amplitude is 
dominant at all but the highest momentum transfers. 

2.4. r + p  model 

The one-pion exchange model is too crude to use as an  approximation to the complete 
spin-isovector t matrix. The longitudinal t matrix falls off too quickly and is too 
attractive at large q, making it a poor fit to the t matrix interaction shown in figure 
5 ( a ) .  A more accurate representation can be constructed by adding p meson exchange 
to the pion exchange. This has been done by the Jiilich-Stony Brook groups with the 
‘ r + p  model’ (Speth 1980), which we now describe. The basic idea is the same as 
previously mentioned, namely to cut away the contact interaction, which is not effective 
in the presence of other short-range repulsive interactions. The p meson exchange 
force is taken to be 

(2.16) 

where m, is the p meson mass and 

We shall repeatedly use the relation 

q2a1 U2 = (a1 * 9)(u2 * 9 ) +  ( - 1  x 4 )  (U2 x 4) .  (2.17) 

Similar to the r exchange, the p exchange interaction can then be decomposed into 
a tensor force, a Yukawa-type interaction and a contact interaction: 

Notice that the tensor forces tend to cancel between the x and the p contributions, 
whereas the Yukawa interactions have the same sign. The p exchange interaction is 
next modified to account for correlation effects. Speth et a1 drop  the contact term and 
reduce the Yukawa term by a factor of y = 0.4. Leaving the tensor part unchanged, 
they find the following expression for the direct p exchange interaction: 

One can now extract the direct longitudinal (al . q ) ( a z  - q )  and transverse (al x 
q )  * (az x q )  components from the modified direct 7~ and p exchange interactions 
(equations (2.14) and (2.19)). We d o  not show the explicit expressions here but refer 
the reader to Love er a1 (1984). These authors also include the nucleon exchange 
terms, as minus a quarter of the direct interactions evaluated at the beam momentum. 
They furthermore include a contact term V, in order to make this model a more 
quantitative parametrisation of the physical t matrix. 
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In  figures 5 ( a )  and ( 6 )  we display the interactions obtained from the ‘ .rr+p’ model 
(broken curves). A momentum-independent contact interaction of V, = 162 MeV fm’ 
has been added to fit the free t matrix at  small momentum transfers. The model 
reproduces the transverse channel (a, x q )  (az x q )  quite well, but it is not so successful 
in the spin-longitudinal channel at large momentum transfers. This is perhaps to be 
expected, since the pion exchange interaction is long range, and  corrections to it that 
go mainly into the longitudinal channel could have some residual q dependence. 

3. Distorted wave impulse approximation 

Given the interaction between the projectile and the target nucleons, the excitation 
cross sections are calculated in the impulse approximation (Kerman et a1 1959). This 
assumes that the interaction only acts in first order to make the transition between 
target states. The interaction also has diagonal matrix elements in the target state. 
This part of the interaction is included to all orders in constructing the scattering 
wavefunctions, making them distorted waves. 

The basic equation for the inelastic cross section (in the centre-of-mass frame) is 
given by the distorted wave impulse approximation ( DWIA; see Haybron and  MacManus 
1964, 1965) 

Here 4, and #J,, are the distorted waves of the projectile in the initial and  final states, 
respectively, and  $,, and (CI, are the associated many-particle wavefunctions of the two 
target states. The off-diagonal part of the interaction that is responsible for the 
excitation is denoted by V,, and p is the reduced mass. If the interaction were given 
by a two-body potential, the expression would clearly be the distorted wave Born 
approximation. However, the nucleon-nucleon interaction is too strong to use a Born 
approximation, so V,, is supposed to represent an effective interaction. The 
impulse approximation, as originally formulated by Kerman et a1 (1959), uses the free 
nucleon-nucleon t matrix for this effective interaction. The empirical knowledge of 
the t matrix is limited to free particle states with the appropriate on-energy-shell 
relations between momentum and energy, but the matrix element above requires much 
more information about the t matrix. The most justified method for producing an 
effective interaction requires first determining a true potential that is consistent with 
the free nucleon-nucleon scattering. The t matrix constructed from the potential would 
have diagonal as well as off-diagonal components. In the integral equation that 
determines the t matrix from the potential, some of the effects of the nuclear medium 
could be incorporated, as discussed in 8 4. 

It is common to disregard the full non-locality of the t matrix and  to use a local 
interaction in coordinate space for (3.1). The direct plus exchange matrix elements of 
this interaction, evaluated for plane wave states, should reproduce the known t matrix 
elements. A potential of this kind, based on the free scattering t matrix, has been 
constructed by Love and  Franey (1985). The interaction is represented in coordinate 
space by a sum of Yukawa functions. An earlier study by Bertsch et a1 (1977) 
determined an  effective interaction for low-energy projectiles, with medium effects 
incorporated by fitting matrix elements of the Brueckner theory (see B 4). The latter 
were given in a harmonic oscillator basis and the effective interaction was also a sum 
of Yukawa functions. 
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The Yukawa functions are convenient for numerical evaluations of matrix 
elements, since they can be represented in a separable form in terms of modified Bessel 
functions: 

A computer code Dwmio based on Yukawa potentials has been constructed by 
Schaeffer and  Raynal (Raynal 1967), and it is the commonly used code for the most 
detailed calculations. This code makes it possible to calculate the exchange interaction 
exactly, given the structure of the target wavefunction. For most applications, the 
exchange interaction does not have to be calculated exactly, since a local approximation 
in terms of a delta function interaction is fairly accurate (Petrovich et a1 1969). 

The diagonal part of the nucleon-nucleus interaction is usually treated 
phenomenologically in an  optical model, and the distorted waves of the projectile are 
calculated by solving the Schrodinger equation. The optical potential includes an  
imaginary part that serves to attenuate the projectile wavefunction in the interior of 
the target. In principle, the optical potential can be calculated from Brueckner theory, 
to be described in § 4 (Jeukenne et a1 1976, Brieva and Rook 1978). However, these 
calculations are not as reliable as an empirical determination from elastic scattering 
data. Even at the level of empirical determination, there is considerable ambiguity in 
the optical potential (Kobas et a1 1982, Meyer and  Schwandt 1981, Meyer et a1 1981). 
Elastic scattering at intermediate energies can be fitted with a potential having a 
monotonic real part and a relatively weak absorptive part (Nadasen et a1 1981), or a 
potential with a stronger absorption but a real part having a more complicated shape. 
Satchler (1983) showed that predicted inelastic cross sections can differ by as much 
as a factor of two using the different kinds of potentials. 

At high energies one expects the medium corrections to the t matrix to be small 
and the optical potential could be determined from the free t matrix. However, the 
non-relativistic t matrix fails to reproduce some properties of the potential at intermedi- 
ate energies. In  particular, there is a difference in the shape between the central and 
spin-orbit potential that is responsible for diffractive structures i n  spin observables 
(Clark et a1 1983). This feature of the optical potential is much better described by 
relativistic models and the potential can be related to the t matrix expressed in a Dirac 
representation (Tjon and Wallace 1985b). 

3.1. Spectroscopic applications of the (p, n )  reaction 

The (p, n )  reaction has been a very useful spectroscopic tool because the reaction 
mechanism is well described by the DWIA at all but the lowest beam energies. The 
angular distribution has considerable diffraction structure, which allows the orbital 
angular momentum of the states to be determined. Also, the relative cross sections to 
different states are closely related to their intrinsic response to charge-changing fields. 

The (p, n )  reaction first gained prominence at low beam energies where the main 
spectroscopic information was related to the isobaric analogue state ( IAS).  I n  more 
recent applications with intermediate-energy protons, the spin transitions become 
dominant and  the distorted waves simplify. In particular, the spin transitions with 
L=O (i.e. no angular momentum transfer) are closely related in the (p,  n) reaction 
and  in beta decay, where they are known as Gamow-Teller transitions. The DWIA 

allows a semi-quantitative extraction of the Gamow-Teller matrix elements from the 
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forward-angle cross sections (Goodman et a1 1980). We now show how this reduction 
is made. 

First, the interaction in equation (3.1) is treated as a momentum-dependent contact 
interaction. Then the matrix element to be evaluated can be expressed by 

where p,,(r) are transition densities for the UT operators in the target and projectile, 
respectively, and  t , , ,(q) is the associated t matrix at  the momentum transfer q. 

The projectile transition density is essentially the product of incoming and outgoing 
projectile wavefunctions: 

pR(r )  = 4 ~ , ( r ) 4 p ( r ) ( P ' l U ~ l P ) .  (3.4) 
For forward scattering and  not too large energy transfers, this density has a nearly 
constant phase over the nuclear volume, although its magnitude of course varies due 
to the absorption in the optical potential. The transition density for the target determines 
the Gamow-Teller (GT) matrix element for the transition: 

M G T ( O +  n ) =  d3rpbT(r) = ( 1 ~ l ~ l ~ 7 I c ~ l o ) .  (3.5) I 
Furthermore, it is convenient to define a factor that contains the effect of the absorption: 

The main dependence on structure has been extracted via the GT matrix element MGT. 
To the extent that all transitions have the same radial shape, the absorption factor ND 
will be independent of the transition. If there were no distortion of the scattering 
wavefunction, the absorption factor would be unity for forward scattering. With these 
definitions we finally arrive at the following expression for the zero-degree cross section 
for individual GT transitions: 

The cross section for the isobaric analogue state (rAs)-the so-called Fermi transition 
generated by the isovector interaction t,-is given by a similar expression. Knowing 
the normalisation factor ND makes it possible to extract the GT and  the Fermi transition 
matrix elements directly from measured zero-degree (p,  n )  cross sections. This method 
has been applied by Goodman et a1 (1980) to show the close relationship between 
transitions in (p, n )  reactions and  in beta decay over the entire range of nuclei where 
strong transitions can be compared. However, if the beta decay transition is weak, the 
method becomes unreliable. The (p,  n )  cross section is not reduced to the same extent 
as the beta decay rate for very weak transitions (Watson et a1 1985). 

Typical (p, n) spectra taken at different beam energies are shown in figure 6. Both 
the GT and  the IAS are seen in the spectra. They are both A1 = 0 transitions. The spin 
excitation makes the GT a 1+ state, whereas the IAS is a O+ state. The I A S  is the strongest 
state at  the lowest energy and the GT state is dominant at 200 MeV. This behaviour 
is consistent with the strong energy dependence of the t matrix interactions (Love and 
Franey 1981) as illustrated in figure 2. 
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Figure 6. Neutron spectra in (p, n )  reactions at different beam energies; at 45 MeV on 
'24Sn (from Sterrenburg et al 1980), and at 120 and 200 MeV on "Zr (from Gaarde 1983). 
(Used with the permission of the authors and North-Holland Publishing Company.) 

3.2. Eikonal approximation 

The DWIA calculations are rather time-consuming, so it is useful to have simpler 
expressions that display the main features of the cross section. Further simplifications 
can be achieved at higher beam energies, where the eikonal approximation applies, 
and where the influence of the real part of the optical potential can be ignored. The 
transition density associated with the projectile and the detected nucleon can then be 
estimated by 

pp(r)  =exp(-iq. r )  exp (3.8) 

where W (  r )  is the imaginary part of the optical potential and uo is the beam velocity. 
The z integration is along an axis parallel to the beam direction, and we have neglected 
the dependence on excitation energy ( Q  value) for simplicity. For low excitations and 
forward scattering, the momentum transfer q is perpendicular to the beam direction. 
This transition density is a function of the transverse coordinate vector 6, which in the 
classical limit plays the role of an impact parameter. If the absorption is strong, the 
attenuation factor from the optical potential implies that the major contributions to 
the matrix element (3.3) are localised in a narrow ring around the target nucleus. 

In this section we consider transitions that are more general than the GT. The 
transitions can be generated by the UT or the 7 operator, and we include a dependence 
on the angular momentum transfer in the transition density for target excitations: 

pfnA+(v)=(nh/- lp' lO)= 8 P n A ( r ) Y ? p ( B ,  4 ) / ( 2 h  + 1)1'2.  (3.9) 

Our treatment of the angle dependence of the inelastic cross section is similar to that 
of Blair (1959). The 4 angle is the azimuthal angle around the beam axis. The 
integration over 4 in (3.3) involves 

d+  exp(-ip$) exp(-iqb cos 4 )  = 2vJP(qb) .  (3.10) 

If the main contribution in (3.3) arises from b = R and 6'= ~ / 2 ,  we can extract this 
factor and obtain the approximation 

(3.11) 

lo2- 
($n+p'I vp!l$O@p) c= r ( q )  y?+(v/2, o ) J p ( q R ) M n A N D  
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where M,lh is defined similar to (3.5), 

M,,  = d’r 6 p , , ~  (r)/(2A -k I (3.12) 

and N D  is the normalisation factor, determined by the attenuation of the projectile 
wavefunction inside the target nucleus, 

(3.13) 

These approximations leave us with the following simple expression for the differential 
cross section: 

(3.14) 

The angle dependence of the cross section is determined by the product of the t matrix 
and the Bessel function. Thus for a given angular momentum transfer A,  the cross 
section has a maximum at an  angle that is mainly determined by the position of the 
maximum of the Bessel function. The target dependence enters, of course, via the 
structure-dependent terms Mnh and the position of the excitation energy. These features 
will be illustrated in the next section. The absorption factor N ,  contains the target 
dependence due to the attenuation of the beam inside the target nucleus. It has a 
weaker dependence on structure via the transition density and  the Q value of the 
transition. The Q value dependence was suppressed in the approximation (3.8). We 
now discuss some general features related to the strength of the optical potential. 

The weak absorption that is often used to fit elastic scattering, and is associated 
with a Wood-Saxon parametrisation of the optical potential, implies that the (p,  n )  
reaction probes the transition density over the entire nucleus. For a constant transition 
density, the absorption factor for central collisions can be estimated by 

N,(b = 0) = exp -~ i “3 (3.15) 

where R is the nuclear radius. Neither this estimate nor detailed DWIA calculations 
with a weak absorption yield the correct absolute magnitude of observed (p,  n) cross 
sections. This point has been investigated for GT transitions that are known from beta 
decay (Goodman et a1 1980). The analysis of GI- strength in (p,  n )  reactions has 
therefore been based on interpolations of the absorption factor between nuclei for 
which a calibration to known beta transitions can be performed. 

The stronger absorption that is associated with a double Wood-Saxon parametrisa- 
tion of the real part of the optical potential (Meyer et a1 1981, 1983), implies that the 
transition density is probed mainly near the surface of the target nucleus and it yields 
a different value for N D .  

The dependence of the absorption factor on Q value can be expressed as a function 
of the adiabaticity parameter 6. This quantity is a product of the excitation energy LE 
and a typical length over which the reaction takes place, divided by the beam velocity. 
In  the weak absorption limit, where the entire nucleus is probed, the adiabaticity 
parameter is [=2RAE/hv, , .  For strong absorption the reaction takes place near the 
surface and  the typical length is not 2R but 2(2Rd)”’, where d is a surface thickness 
determined by the strength of the absorption. The adiabatic cut-off is therefore sensitive 
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to the strength of the optical potential. This fact is important for an experimental 
determination of the total GT strength. Although a substantial strength may be located 
at higher excitations above the GT resonance, as discussed in 5 5, it may not be seen 
in the (p, n )  reactions due to the adiabatic cut-off. I t  is therefore important to have 
a realistic optical potential in order to extract the total strength from the measured 
(p, n)  cross sections. I t  is also desirable to perform the measurements at the highest 
possible beam energy, since the adiabaticity parameter becomes smaller in this limit. 

3.3. Angular distributions 

The angular dependences of specific parts of the spectrum observed in (p, n) reactions 
on 90Zr are shown in figure 7. The angular distributions for the IAS and the GI- transitions 
shown to the left have a maximum at zero degrees, characteristic for A = 0 transitions. 
The distributions to the right have their maximum at a finite scattering angle; they 
have been assigned to specific shell model transitions as indicated on the figure. The 
peak positions in angle space are consistent with the formula (3.14) obtained in the 
eikonal approximation. The maximum ofthe Bessel function is at qR = 1.8 for p = A = 1 
and qR = 3.1 for p = A = 2, corresponding to scattering angles of 6.2 and 10.6" respec- 
tively. The t matrix interaction has, of course, also a q dependence, which can shift 
the peak position to more forward angles, but the simple estimates based on the Bessel 
functions already show a rough agreement with the data. 

An overview of the (p, n)  cross section for reactions on 90Zr at 200 MeV is shown 
in figure 8 as a function of the excitation energy at different scattering angles. The GT 

IOOL 
- E, 2 8 7 MeV 
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E, = I 8  MeV 
r=96 MeV 

E, = 2 4  MeV 
r = 1 4  MeV 

10 
f,/ 2-h 11 / 2 
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Figure 7. Angular distributions of specific peaks in (p, n )  reactions on '"Zr at 200 MeV 
(from Gaarde er a/  1981). The curves (with arbitrary normalisation) have been obtained 
from DWIA calculations for typical single-particle transitions. (Used with the permission 
of the authors and North-Holland Publishing Company.) 
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Figure 8. Neutron spectra from (p ,  n)  reactions on "Zr at 200 MeV; the different scattering 
angles are  indicated (from Gaarde  er a /  1981). (Used with the permission of the authors 
and  North-Holland Publishing Company.) 

state is strongly excited at forward angles, whereas the IAS is much weaker at this 
beam energy. At larger scattering angles the A = 1 and A = 2 transitions start to dominate 
the spectra, and  at the largest scattering angles the spectrum becomes a broad quasi- 
elastic peak with no  obvious or clear signature of structural transitions. 

Osterfeld et al (1985) have reproduced all the spectra shown in figure 8 by DWIA 

calculations. They use the weakly absorbing optical potential of Nadasen er a1 (1981) 
and the Love and Franey (1981) interaction for the charge exchange. They normalise 
the cross section by comparing with the known beta decay of 4'Ca, finding that the 
theoretical cross section must be increased by a factor of 1.16. With this model they 
obtain a good agreement with the data for scattering angles from 0" to 20". This result 
suggests that the (p, n)  reactions on heavy nuclei are dominated by single-step transi- 
tions. This conclusion may be too strong; a certain amount of single scattering will 
unavoidably introduce contributions from multi-step processes. We shall return to this 
question in 9 6, where we discuss the background of the total GT strength. 

4. The interaction in a nuclear medium 

The effective interaction of an incoming nucleon and  a nucleon bound in a target 
nucleus is different from the free t matrix interaction. A detailed study of medium 
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corrections requires as input a potential for the interaction between free nucleons. 
There are several phenomenological potentials available. The most detailed and 
commonly used are known as the Paris potential (Lacombe et al 1980) and the Bonn 
potential (Holinde et a1 1972). These potentials have been constructed to be as 
consistent with meson exchange theory as possible. The long-range parts are completely 
local and  based on pion exchange. At intermediate range, the Paris potential uses 
two-meson exchange theory, while the Bonn potentials use heavier mesons. The 
two-meson exchange in the Paris potential introduces some non-locality that is not 
present in the Bonn potentials. At short distances, the potentials are completely 
phenomenological and adjusted to fit the Arndt phase shifts (Arndt et a1 1983), 
and  thereby the elastic scattering t matrix. Above pion production threshold, no 
potential model can reproduce the phase shifts for elastic scattering because of the 
inelasticity. 

4.1. Brueckner theory 

Once a potential is assumed, the next step is to determine a t matrix that incorporates 
medium corrections. The Brueckner theory provides the proper treatment of these 
effects and  replaces the free t matrix by the G matrix. For a complete review of the 
Brueckner theory, the reader is referred to Day (1967) and  Bethe (1971). Here we will 
only describe the theory in broad terms. There are two important kinds of medium 
corrections that are included in the theory. One is the Pauli principle, which restricts 
intermediate two-particle states to be above the Fermi level. From the study of the 
free t matrix we know that it is important to treat the short-range part of the nucleon- 
nucleon potential to all orders. One can therefore expect that the Pauli blocking in a 
nuclear medium modifies the effect of the short-range interaction dramatically. A 
second medium correction in the Brueckner theory is a possible modification of the 
energy spectrum of two-particle states due  to the other particles in the medium. 

The fundamental equation determining the (? matrix is the Bethe-Goldstone 
equation. It may be written formally in terms of the free nucleon-nucleon potential 
V as 

Here E is the total available two-particle energy. The initial and final two-particle 
states are denoted by IpIp2) and Ipjp;). The sum is over intermediate states l k l k 2 )  with 
energy e ( k l ,  k,). The G matrix equation differs from the Lippmann-Schwinger 
equation for the t matrix in two respects, as already mentioned: the sum over intermedi- 
ate states Ik,k,) is restricted by the Pauli principle to unoccupied states, and the energy 
of these states differs from the free energy 

h’ 
E ( k , ,  k2) = - ( k: + k:)  

2m (4.2) 

by the medium corrections to the single-particle energies. In  infinite nuclear matter 
the total momentum k , + k ,  of two interacting particles is conserved; it appears in 
equation (4.1) merely as a parameter. It is therefore convenient to express this equation 
in terms of variables for the relative and the centre-of-mass motion respectively: 

k=(k1-k2) /2  K = ( k ,  + k2)/2. (4.3) 
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It is customary to treat both the restriction from the Pauli principle and the 
single-particle energy spectrum in approximations which allow the G matrix equation 
to be separated into partial waves for the relative coordinate. The Pauli operator is 
treated in an  angle-averaging approximation 

c Ik,k,)(k,k,l- c IKk)QK(k)(Kkl  
k , k 2 > k F  k .  K 

where QK ( k )  is a scalar function of k. For infinite nuclear matter one finds 

if k2+ K 2 <  k', 
Q K ( k ) =  1 if IK - kl> k F  I" ( k 2 +  K 2 -  k $ ) / 2 k K  otherwise. 

(4.4) 

(4.5) 

The separation between the centre-of-mass and relative motion requires that the 
single-particle energies are of the form 

h2  &(IC)=- k2+ U,, 
2% 

(4.6) 

where mp and  U,, can be different for states above and below the Fermi surface. The 
energies of the states below the Fermi surface should be self-consistently determined 
with the Brueckner interaction: 

h2  h2  
& ( k ) = -  k2+ (kk ' lGIkk ' )=,  k2+ U. 

2m k ' < k F  2m (4.7) 

There is no consensus on the best treatment of the states above the Fermi surface. 
One popular prescription is to use free particle energies (Day 1981). This means there 
will be a gap  between particle and  hole energies. Other workers use a self-consistency 
criterion that produces a continuous spectrum (Jeukenne et a1 1976). We will not be 
concerned with the details of how equation (4.1) is actually solved. It is an integral 
equation usually solved by matrix methods in a suitably defined representation. 

It is helpful to display the graphical perturbation expansion for the effective 
interaction to see what processes are included in the theory. The effective interaction 
is the sum of all perturbation diagrams with four external particle lines, shown as the 
ellipse in figure 9. The simplest diagram is a single potential interaction between the 
two particles, shown as the first diagram on the right. The next diagram is the second 
Born approximation. When successive interactions between the two particles are 
summed to all orders, the result is the Lippmann-Schwinger equation for the t matrix 
or  the equation for the G matrix. 

The single-particle energy effects in the Brueckner theory arise from diagrams such 
as the third in figure 9. Here one of the interacting particles has a potential interaction 
with the medium. Diagrams with the medium interaction as a diagonal potential matrix 
element can be summed to all orders by changing the single-particle energy of the 
state as given in equation (4.7). In the usual approximation, one neglects the effect 
of the potential in states above the Fermi surface. The error in doing this is in principle 
rectified in the next stage of the calculation, where all three-body diagrams are evaluated 
(Day 1981). The diagrams discussed so far constitute the G matrix interaction of 
Brueckner theory, The fourth diagram in figure 9 is another medium correction that 
we will consider shortly. 
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Figure 9. Graphical representation of the different contributions to the G matrix interaction 
discussed in 5 4.2. 

G matrix interactions 

The G matrix approaches the free t matrix for high-energy nucleons, but the medium 
has a dramatic effect on the interaction at lower energies. In particular, the interaction 
between particle-hole states near the Fermi surface is very different from the free 
interaction. Since the range of the interaction is small compared with the size of a 
typical nucleus, it is plausible'?to neglect the range of the interaction entirely for nuclear 
structure purposes and to treat it as a contact interaction in the various spin and  isospin 
channels: 

v , ,= (Uo+  ' U 2 - k  U,T1 ' Tz+ U,,,Ul * U211 . T ~ ) ~ ( Y I  - Y z ) .  (4.8) 

The values of the U, and U,,, interactions, obtained from different G matrix calculations, 
art: quoted in table 2. They have been determined in the so-called Landau limit and  
represent the low-frequency long-wavelength interactions between particles moving 
close to the Fermi surface. If there were a close correspondence between the free 
interaction and the interaction in the medium, the U in the above equation would be 
equal to the corresponding t matrix elements at q = 0 shown in figure 1. The values 
of the U,, interaction are all in the range 180-220 MeV fm3. The free t matrix is around 
150 MeV fm3, so the medium effects have only a mild influence on U,,,. Also the values 
obtained in various G matrix calculations are close to each other, which gives confidence 
in the resulting interaction. The situation is not so satisfactory for the U, interaction. 
Here the t matrix is strongly energy dependent, and the U, values obtained from 
Brueckner calculations show considerable variation. We shall see in Fi 4.4 that the 
empirical interaction, i.e. the interaction required by the empirical spectroscopy, is 
different from all of these values. Although not directly relevant to the charge exchange 
interaction, we should also mention that the isoscalar interaction uo comes out quite 
poorly in Brueckner theory. 



630 G F Bertsch and H Esbensen 

Table 2. UT and T interactions (MeV fm') in the Landau limit. 

V,,, 07 Potential source Reference 

From G matrix 
176 68 Hamada-Johnston (1962) Bertsch et a/ (1977) 
217 151 Reid (1968) Bertsch et a /  (1977) 
197 68 Reid (1968) Backmann et a /  

186 79 Bonn Dickhoff (1983) 
220 85-124 Bonn Nakayama et a1 

(1979) 

(1984) 

Empirical values 
150 - Free t matrix Figure 1 
147120 190130 (p, p') scattering Austin (1980) 

142 Optical potential See text 
200-240 Gamow-Teller resonance Bertsch et a /  (1981) 

250-300 Isospin excitations Bertsch (1983) 

4.3. Medium polarisation and the Landau parametrisation 

The Brueckner theory is a n  essential ingredient to derive an effective interaction from 
a nucleon-nucleon potential, but it is not sufficient. Each particle polarises the medium 
around it and the polarisation field provides a n  important part of the total interaction. 
This is similar to the interaction between electrons in an  electron gas. There the 
polarisation changes the effective interaction from the Coulomb field to a screened 
Coulomb field. The perturbation diagrams associated with the medium polarisation 
start with the fourth diagram in figure 9. 

The polarisability of the medium is most conveniently discussed in the dimensionless 
parametrisation of Landau. Here we consider the low-frFquency long-wavelength limit 
of the polarisation of a Fermi gas, induced by a particle just outside the Fermi surface 
(see e.g. Abrikosov and  Khalatnikov 1959). A good measure of the polarisation-or 
the strength of the interaction V between the particle and particles in the Fermi gas-is 
the induced density. Landau's original discussion was based on the Boltzmann 
equation, but a quantal treatment yields exactly the same expression. The momentum 
transfer to particle-hole excitations is small in the long-wavelength limit. The sum 
over occupied states can therefore be approximated by an integral over the Fermi 
surface, and  the induced density is 

(4.9) 

Here d N / d E F  is the density of states at the Fermi surface. The particle inducing the 
polarisation is also near the Fermi surface, so the only dependence of the interaction 
on the particle is through the angle 0 between the momentum vector of the external 
particle and  a particle in the medium. For q+O the energy denominator cancels the 
factor q * V k & ( k )  in the numerator and we obtain the expression 

(4.10) 

where 

(4.11) 
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Note that F ( 6 )  is dimensionless. The Landau parameters are the coefficients in the 
expansion on Legendre polynomials: 

F (  0)  = FtP/(cos 19) (4.12) 
I 

i.e. 

The density of states at the Fermi surface is 

d N  g mk,  
de, 2rr' h' 

- 

(4.13) 

(4.14) 

where g is the degeneracy of states. Unfortunately, there are two conventions in nuclear 
physics for choosing the degeneracy factor g. Speth and co-workers use the spin 
degeneracy, g = 2. Here we shall use the spin-isospin degeneracy, g = 4. Then the 
Landau representation measures the strength of the interaction in units of dEF/dN = 
153 MeV fm3. 

The functional form of the screening can be derived from the RPA formalism 
discussed in § 5.2. A residual interaction among particle-hole states near the Fermi 
surface will modify the independent particle response by the factor (1 - U I I ' ~ ) ) ) - ' .  In  
the Landau limit ( w  -+ 0, q -+ 0) this factor becomes (1 + F J ' .  The importance of the 
medium polarisation can be assessed from the magnitude of the Landau parameter 
Fo. The system becomes unstable with respect to density fluctuations if Fo is less than 
-1. If F, is of order -1 or greater, the polarisation field substantially screens the free 
interaction. It is clear that the polarisation effects must be very large in the isoscalar 
channel. The Brueckner interaction has a magnitude of the order of -150 to -300 MeV 
fm3, so the medium would be unstable in their absence. 

Babu and Brown (1973) have proposed a simple model to estimate the effects of 
medium polarisation. Essentially, the interaction is assumed to be independent of all 
momenta, i.e. a delta function. This allows the polarisation graph to be calculated in 
terms of the Lindhard function. The only subtle point is the spin and isospin coupling, 
which requires the same linear combinations of spin and isospin amplitudes as was 
required to express the interaction in particle-particle spin coupling. Recent calcula- 
tions of medium polarisation have been reported by Dickhoff et al (1983) and Nakay- 
ama (1985). The polarisation mainly affects the isoscalar channel, reducing the strong 
attraction. There is a mild repulsive effect on the U,,, interaction, and virtually no effect 
on the U, interaction. 

4.4. Empirical interactions 

An interaction can be determined empirically in several ways. The magnitude of the 
inelastic scattering cross section fixes the strength of the interaction between projectile 
and target nucleons if the target transition densities and the distorted projectile 
wavefunctions are known. This method is not reliable for obtaining absolute interaction 
strengths because of uncertainties in the optical potential. Relative interaction strengths 
can be obtained with much less ambiguity from this source by comparing cross sections 
with states of different character in the same nucleus. The relative magnitude of U,,, 
and U, can be extracted from the (p, n) cross section on a single target. Nuclei used 



632 G F Bertsch and H Esbensen 

for this purpose (e.g. 'Li and "C) have isolated transitions to the IAS and to some 
other states having a strong GT matrix element. For low-energy protons, the relative 
cross sections require the spin interaction to be weaker than the spin-independent 
interaction, roughly by a factor of $ (Anderson el a1 1970). This result contradicts 
Brueckner theory, which predicts U,,, to be greater than U,, as may be seen from table 
2. For higher-energy protons, the interaction approaches the free t matrix. This may 
be seen from the data on intermediate energy (p,  n) interactions shown in figure 2. 

Austin (1980) has analysed the absolute strength of the interactions for low-energy 
proton scattering using optical potentials that are consistent with elastic scattering 
data. His interaction strengths are quoted in table 2. We see that U',, is quite close to 
the free t matrix. The mild medium corrections to the interaction in this channel 
disappear a small amount above the Fermi energy. The U, interaction is the one causing 
difficulty; it is much larger than the G matrix results, and it is so rapidly varying in 
the t matrix that no value can be assigned. 

Another empirical method for extracting the U ,  interaction is from the isospin 
dependence of the single-particle Hamiltonian. It has a potential term V, ( r )Tz (  N - 
Z ) / A ,  where 7, is the isospin of the particle. The relationship to the interaction is 
V ,  = v,p, assuming that all densities have the same radial dependence. We quote a 
value in table 2 using this formula, with V ,  obtained from Rapaport et a1 (1979) and  
p = 0.16 fmP3. This value of uT is at the upper end of the range found in the G matrix 
calculations. 

Empirical interactions applicable to nucleons at the Fermi surface can be extracted 
from the energetics of the IAS and the GT resonance. The theory relating the interaction 
to the excitation energy is discussed in the next section. For completeness we quote 
some of the results in table 2. In  the spin channel, the energy systematics of the GT 

resonance require an interaction strength in the range 170-220 MeV fm', provided the 
interaction is fairly short-range; with the range of one-pion exchange it needs to be 
slightly stronger. Overall, the G matrix gives interactions that are consistent with this. 
Note, however, that the GT resonance is sensitive mainly to the interaction at small 
momentum transfers. Information about the interaction at large momentum transfers 
can be obtained from high spin states or  from broad strength distributions, but this 
part of the interaction is not as well determined. 

The U ,  interaction extracted from structure energies is stronger than U,,, as was 
found in low-energy proton scattering. Again, the Brueckner theory fails in accounting 
for this interaction. 

5. Nuclear structure 

In this section we shall review the theoretical techniques used to interpret the nuclear 
structure aspects of the charge exchange reactions. As we saw in 5 3, the DWIA factors 
the reaction amplitude into a projectile-dependent part and a nuclear transition density. 
For our  purpose, the densities of interest are matrix elements of the charge-changing 
operators 

P v . r = C v * ~ ( t ' - t ' J  p T = x  T + 8 ( t ' - t ' i ) .  (5.1) 
I I 

Nuclear structure theory is founded on the description of the nuclear wavefunction 
by one o r  more Slater determinants of single-particle orbitals. The orbitals in turn are 
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defined as eigenstates of a static single-particle Hamiltonian. Useful theory can be 
done at different levels of sophistication. At the highest level, a large multi-particle 
configuration space is defined in the shell model representation, along with a model 
Hamiltonian that includes single-particle energies and  residual interactions. The 
Hamiltonian is diagonalised to produce predictions for matrix elements between all 
the states. This approach is highly successful when the shell model space is small 
enough to allow a complete diagonalisation (Wildenthal 1984). The space restriction 
effectively limits the method to nuclei lighter than A = 40 or to nuclei at closed shells. 
It is the only practical way to get accurate predictions when the ground state is strongly 
mixed among the shell model configurations. 

If the ground state can be reasonably approximated by a single Slater determinant, 
mean field theory provides an  excellent description of the transitions and one that is 
not limited by the size of the shell model configuration space. When ground state 
correlations are completely negligible, the Tamm-Dancoff approximation (TDA) is 
applicable. Some ground state correlations can be included in the mean field description 
with the random phase approximation (RPA) .  In either case, the main object of the 
theory is not the transition matrix elements to individual states, but rather the response 
function. This is defined for an  arbitrary operator 0 by 

S ( E )  =E ~(f101i)12S(Ef-Ei- 
F 

(5 .2)  

Here i and  f label initial and  final states. In mean field theory the only final states in 
the space are states with one-particle one-hole character. Mostly, one does not attempt 
to make a very detailed description of S ( E ) ;  rather one characterises its major 
features-the total strength, the position of major peaks and the widths of those peaks. 
The RPA works very well for determining the position of major peaks and  their strengths, 
but it cannot account for the width when the peak is in a region of high level density. 

At a very coarse level, some information about the response can be obtained from 
sum rules. They provide a powerful technique for evaluating the total strength and 
an  average energy by closed formulae. We shall now describe these various theoretical 
tools in order of increasing complexity, starting with the sum rules. 

5.1. Sum rules 

The key sum rules of the charge exchange excitation are based on the commutator of 
the isospin operators: 

[t,, t - ]  = 2t,. ( 5 . 3 )  

Here we define the operators by t ,  = t, * i ty  with Cartesian operators having eigenvalues 
k 5.  Equation (5.3) can be applied directly to the spin-independent excitations. We 
evaluate both sides of this equation in the initial state and insert a complete set of 
final states between the operators on the left-hand side. The result is 

Because the initial state is close to an  isospin eigenstate, the result is trivial; the initial 
state typically has isospin T, = ( N  - 2 ) / 2 ,  so the second term vanishes and  we have 
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The result is not so trivial for the GI- operator, which we define in terms of the 

P ;  = C  c w ( i ) r + ( i ) .  (5.6) 

Pauli spin matrices crw as 

The corresponding commutator relation is 

(5.7) 

The sum rule based on this relation was first applied to spectroscopic studies by Gaarde 
et a1 (1980). Evaluating this expression in the ground state gives 

s,--s,+=C l ( ~ ~ l P L l ~ l ) 1 2 - c  I($flP;l$,)l2=3(N -2).  (5.8) 
f w  Ti* 

Thus the difference in total strength for P -  and P' decay is fixed by this sum rule. 
The P' strength function is quite weak, although not forbidden by isospin conservation 
like the ti strength, so for practical purposes the sum rule can be viewed as a close 
lower bound on the P -  strength. In the next section we shall use this bound, calling 
it the sum rule bound. 

These sum rules have a significance extending outside nuclear physics to the QCD 

theory of hadrons. The current algebra theory of hadronic processes is fundamentally 
based on the extension of these operators to the four-component Dirac operators. 
Doubling the dimensionality of the operators has no effect on the commutators 
themselves. But the operators are interpreted to act on the fundamental quark fields. 
Adler and Weissberger (see Adler and Dashen 1968) applied the analogue of equation 
(5.8) involving the axial vector current, choosing $i to be a nucleon and Gf to be either 
a nucleon or  a nucleon plus pion state. They were able to estimate the matrix element 
to the nucleon plus pion state and show consistency with the sum rule, with a nucleon 
matrix element close to the empirical value 

g A  = (PIPiuarkln) = 1.26* (5.9) 
The matrix element is larger than one because the N +  T states have a preponderance 
of P' strength. For our purposes we will only use the sum rule at the level of nuclear 
physics, with (pIP-In)= 1 .  A failure of the nuclear sum rule would then signal that 
the mesonic effects behave differently within the nucleus than they d o  for free nucleons. 

5.2. Response functions in mean field theory 

The theory of the response starts from the independent particle model. First the 
single-particle Hamiltonian is defined, and its eigenfunctions 4ct and eigenvalues E,, 

are calculated. The independent particle response to a single-particle operator 0 is 
then obtained from the equation 

(5.10) S ( E )  = C n , ( l -  n ~ ~ , ) I ( ~ , , 1 0 1 ~ , ) 1 2 ~ ( E  + e, - E , , ) .  
an'  

Here ne = 0  or  1 is the occupancy of a given orbit cy. 

The effective Hamiltonian also contains a residual interaction which has major 
effects on the response, but the independent particle model still provides a useful 
orientation. For smooth operators, there are major concentrations of strength that are 
identified with specific transitions between shells. A simple illustration is the closed 
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shell nucleus ""Zr. It has all shells filled up  to the g-orbit. Within the g-orbit, only 
the gg,z neutron orbit is occupied. The GT and  the isobaric analogue transitions are 
schematically illustrated in figure 10. The strength function for the operator f -  will 
have a single peak at an  excitation energy of E = E;,? - E : , ~  in the independent particle 
model. The GT operator can make transitions from g,",> to g9pI2 or  g?,,, giving two 
peaks in the spectrum. 

Calculations in the independent particle model require specification of the single- 
particle Hamiltonian. This consists of a charge-independent part, which we write as 

HFP= T-t- U ( r ) +  V , , ( r ) l . s  (5.11) 

together with a part that depends on whether the particle is a proton or  a neutron. 
Here T is the kinetic energy operator, U ( r )  is a local potential and V , $ ( r )  is the 
spin-orbit field. The empirical phenomenology of the shell model constrains these 
potentials quite strongly; in fact, better than they can be determined from first principles 
and Brueckner theory. For example, the spin-orbit splitting of high 1 orbitals near the 
Fermi level is of the order of 5-6 MeV, and  the V,, ( r )  must reproduce this. One aspect 
of the Hamiltonian that is not so certain concerns the non-locality in the potential. 
The influence of this can be parametrised by using an effective mass different from 
the free nucleon mass in T. The empirical spectroscopy near the Fermi level is quite 
compatible with an  effective mass of one (in units of the nucleon mass). On the other 
hand, the optical potential for nucleons in the continuum, and the electromagnetic 
response at high momentum transfers, favour an effective mass in the range 0.8-0.9. 
The Brueckner theory predicts an  effective mass smaller than one; for example, Negele 
and Vautherin (1972) calculate m* = 0.6. One of the most noticeable features of mean 
field theories based on Dirac potentials is that they also predict effective masses much 
smaller than one. For the GT and the IAS transitions, the effective mass uncertainty 
plays no direct role because the momentum of the particles is not changed. However, 
the excitation energy of transitions requiring a finite momentum transfer, such as L = 1 
transitions, will depend on the assumptions about the effective mass. 

It is important to include the residual interaction for a quantitative theory of the 
response. The mean field theory can be constructed very conveniently by generalising 
the response to a complex function of densities at two points, namely the independent 
particle polarisation operator 

(5.12) 

This is actually the polarisation operator used in the Tamm-Dancoff approximation 

Protons Neutrons 
I A S  

J, 

J ,  

Protons Neutrons 

G T  

Figure 10. Schematic shell model picture of isobaric analogue ( IAS)  and Gamow-Teller 
(GT) transitions. The T operator replaces a neutron by a proton in the same orbit. The 
m operator can place the proton in both the j ,  and the jc orbits. 
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(TDA). The retarded polarisation operator used to calculate the RPA response contains 
in addition the poles - l / (E  + i v  + E , , -  e m ) ;  see e.g. Bertsch (1983). In both approxima- 
tions the polarisation operator that includes the effect of a residual interaction U (  r, r' )  
is 

(5.13) 

This equation is to be understood as an  operator equation, i.e. the operators are 
expanded in some basis and  the operations on the right-hand side are performed as 
matrix operations. Since the polarisation operator involves only the local densities, 
non-local operators such as the exchange interaction cannot be incorporated in (5.13) 
exactly. It is common to use a zero-range approximation to the exchange interactions. 
Otherwise, the residual interaction must be treated by a matrix diagonalisation in the 
space of configurations. The response to an  operator 0 is calculated from the polarisa- 
tion operator by the integral 

n ( ~ ,  r, r') = II'"'(1 - vII(" ')- ' .  

d v d r '  O+(r)IT(E, r, r')O(r'). (5.14) 
?r 

The simplest theory including residual interactions is the TDA, which is given by 
equations (5.12)-(5.14) as written. The TDA theory respects the sum rules (5.5) and  
(5.8). It also has the property that the average excitation energy is given by the 
commutation expression 

(5.15) 

The expectation value is taken in the independent particle wavefunction of the parent 
state. The operator in (5.15) is evaluated by explicitly summing over intermediate 
particle-hole states. For the present application, we separate H into charge-dependent 
and spin-dependent parts together with a scalar Hamiltonian: 

We can then make the corresponding separation of the mean excitation energy 

( E ) = A E , , , , , + A E , , + A E , , + A E , + A E , .  (5.17) 

The energetics of the I A S  and  the GT state can be most conveniently discussed by 
assuming that all of the t-  and the p -  strengths are concentrated in single states. In 
the TDA the resulting energy will be just the mean value computed in (5.15). The 
normalised coherent states are defined by 

I I A S ) = ~  iph)(plt_lh)/(N -2)1'2 (5.18) 
ph 

(5.19) 

where the sum is over all particle-hole states. 
The theory of ( E )  is particularly simple for the Fermi transition operator t - ,  since 

it commutes to an  excellent approximation with all of the terms in H that conserve 
isospin. The U,T, . T~ term in the Hamiltonian contributes both to the single-particle 
energies and  to the residual interaction in the IAS, but these contributions necessarily 
cancel. All terms in the Hamiltonian (5.16) except the Coulomb conserve isospin, SO 
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the energy expectation (5.15) depends only on that term. Evaluation of the commutator 
with 0 = t-  yields 

(5.20) 

for the direct part of the interaction. Because isospin is nearly conserved, the strength 
is very concentrated in a single state or a narrow group of states. Thus (5.20) is the 
energy of the isobaric analogue state ( I A S ) .  The integral may be evaluated using 
densities obtained from the occupied orbits of the single-particle Hamiltonian. If we 
require the Hamiltonian to reproduce the charge radius of the nucleus, the predicted 
energy of the I A S  is within a few per cent of the observed analogue state. However, 
(5.20) does not include the exchange Coulomb interaction. When this and  other small 
effects are included, the theoretical value is off by 7%,  which has been a long-standing 
problem in nuclear structure physics (Nolen and  Schiffer 1969). 

5.2.1. Energy of the Gamow-Teller resonance. The energetics of the Gamow-Teller 
strength function are more complicated, because more terms in the Hamiltonian fail 
to commute. Let us first consider the residual interaction term ~ ~ , ~ ( r ]  - r 2 ) ( a ,  az) x 
( T ~  * T~). In order to make a non-vanishing expectation value in (5.15), the operators 
0’ and 0 must act on particles 1 and 2 .  Here 0 = p i .  Using the definition (5.19) of 
the coherent GT state, the energy shift can be written as the expectation value 

A E u ~  = (GTIU,,(ui u 2 ) ( 7 1  * 7z)IGT). (5.21) 

We can express this energy shift in terms of the transition density for the GT state, 

(5.22) 

and obtain 

AE,,, = 2 d r  d r ‘  Gp,,(r)u,,(r - r ’ )8pGT(r‘ ) .  (5.23) 

The factor of 2 arises from the isospin operator 7 ,  * T ~ ,  which can be decomposed into 
2 ( t l + t 2 - +  f l - f 2 + ) + ~ 1 z ~ 2 z .  This expression can easily be estimated if we make two 
assumptions. The first is that the range of the interaction is small compared with the 
nuclear size. Then it can be approximated by the zero-range form 

I 

U m , ( r I -  r2) = U A r I  - r2). (5.24) 

The second assumption is that the transition density is proportional to the ground 
state density, 8pG,cC p. Normalising this to the integral 

dr8pGT=(iSp-)l” (5.25) I 
the normalised density is 

The integral (5.23) is now expressed in the form 

(5.26) 
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where ( p )  is the average magnitude of the density weighted by its radial distribution. 
This is a quantity that does not vary much from nucleus to nucleus and has the order 
of magnitude of the nuclear saturation density. Numerical calculation with valence 
neutron densities obtained from the single-particle Hamiltonian gives the magnitude 
( p )  = $po = 0.12 fm-3. 

The effective strength of the residual interaction depends on the product of the 
integrated strength and  the average density: 

K,, = U&)* (5.28) 

A numerical estimation of K,,,, using a typical value of U,,, from table 2, is K,,, = 
200 x 0.12 MeV = 24 MeV. 

We next consider the Coulomb and the isovector nuclear single-particle energies. 
These contribute the same amount in the GT energy as in the IAS; so instead of 
calculating these terms, we may just add the analogue state energy. However, the I A S  

has an additional contribution from the residual U ,  interaction, which must then be 
explicitly subtracted. That contribution may be treated in the same way as the U,,, 

residual interaction, defining 

K ,  = U,(P). (5.29) 

The one remaining term is the spin-orbit potential. This can vary depending on 
the specific shells of the valence neutrons, but usually most of the excess neutrons 
occupy high j valence orbits. In a typical situation in heavy nuclei, the parent nucleus 
has only the j ,  shell filled, while the daughter nucleus has both j ,  and j ,  empty; or 
if the daughter nucleus has j ,  filled and j ,  empty, both shells will be occupied in the 
parent nucleus. The operator ,E- has roughly equal strengths for spin flip as compared 
to non-spin flip transitions. Since the transitions are half blocked by occupancy factors, 
the expectation value of the spin-orbit potential will be 

(5.30) 

A simple formula can now be obtained by assuming that the ,E- strength exhausts the 
sum rule, So- = 3( N - 2) .  The mean excitation energy of the GT strength is then given 

A E,, = $ ( E , ,  - qJC) r= 3 MeV. 

by 

2 ( N - Z ) .  (5.31) 

Figure 11 shows the data on the position of the GT resonance compared with the 
functional form (5.3) (from Nakayama et a1 1982). For nuclei with small neutron 
excess, the AEIy dominates and  the GT state lies above the IAS.  For the heaviest nuclei, 
such as '08Pb, the second term balances the first and  the GT state is at the same energy 
as the I A S .  The slope of the line requires that K ,  be larger than K , ~ .  This is the reverse 
of the prediction from Brueckner theory. However, K ,  is compatible with the empirical 
interaction deduced from low-energy (p, p') scattering or from isospin excitations, as 
given in table 2. 

The difference in interaction strength between U, and U,, is also apparent in the 
energy of the L = 1 excitations. The L = 1 response is not as sharply localised as the 
L = 0, as may be seen from figure 8, but it still stands out sufficiently over the background 
to define a peak position. It is higher in energy than the GT resonance for two reasons. 
First, the kinetic energy in the Hamiltonian contributes to the sum (5.17) for any 
excitation that is spatially inhomogeneous. Also, there is less Pauli blocking and more 

K , ,  - K ,  

A ( E G T ) - ( E I A S ) = A E , , + - - -  
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Figure 11. Energy difference of the Gamow-Teller and the isobaric analogue state for 
different nuclei as a function of the relative neutron excess; the correlation illustrates the 
functional form of equation (5.30) (from Nakayama et al 1982). (Used with the permission 
of the authors and North-Holland Publishing Company.) 

particles participate in the excitation, making a larger contribution to the residual 
interaction. The position of the L = 1 peak, as seen with intermediate-energy proton 
scattering, is 6.6 MeV in 2"8Pb and 12.6 MeV in 90Zr, measured with respect to the IAS 

(Bainum et a1 1980, Horen et a1 1981). Charge exchange scattering of 40 MeV protons 
also shows an L =  1 peak, but centred at a 2.5 MeV higher energy (Sterrenburg et a1 
1980). The intermediate-energy proton excites mainly the spin mode, while the lower- 
energy beam also makes spin-independent excitations. Let us estimate the interaction 
energy of the scalar dipole mode at about 8 MeV. Then the strength of the U,, interaction 
should be 25% smaller than the U, interaction to explain the shift. 

5.2.2. Fragmentation of the Gamow-Teller strength. The sum rule treatment is adequate 
to describe the position of the GT resonance, since the strength function is quite 
concentrated. However, there are also weak GT transitions at low excitation energies, 
which are important in beta decay. Explicit calculation of (5.13) with the detailed 
shell structure of (5.12) is necessary for a more accurate treatment. 

One approximation greatly simplifies the calculation. Assume that the individual 
matrix elements of the residual interaction are proportional to the matrix elements of 
the GT operator: 

(aP- ' lUVT(Ui  ' u2)(71 ' ~ z ) ~ ~ ' P ' - ' ) ' ~ ( ~ ~ P - ~ ~ ) ( ~ ~ ~ ~ - ~ ~ ~ ) .  (5.32) 

This interaction, of course, reproduces the energy of the GT state and by itself makes 
the GT an eigenstate of the Hamiltonian If. Equation (5.32) is a useful approximation 
because the fragmentation of the GT state is more influenced by other terms in the 
Hamiltonian, such as the single-particle energies, than in the fluctuations of individual 
particle-hole matrix elements about (5.32). The separability of this interaction allows 
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(5.13) to be solved as an  algebraic equation. This technique has been exploited by 
Klapdor (1981) to find a semi-phenomenological description of beta decay rates over 
the entire periodic table. 

Two aspects of the strength fragmentation are fairly easy to understand without 
detailed calculations. Part of the fragmentation is associated with the conflict between 
the spin-orbit field and the residual interaction. The U,,, interaction (5.32) is diagonal 
in the GT state (5.'[9), but the spin-orbit field is not. The off-diagonal matrix elements 
of V,,l. s are then responsible for the fragmentation. These matrix elements can be 
estimated at about half the spin-orbit splitting, so in perturbation theory a quarter of 
the strength is transferred to the lower states. This may be seen in figure 12, showing 
the GT strength in "'Pb for the independent particle model and with a residual 
interaction included (Sagawa and Van Gai 1982). The thin vertical lines are the 
transition strengths of the individual particle-hole configurations, while the broader 
bars are the resull. of diagonalising a residual interaction. The most obvious effect of 
the interaction is to shift most of the strength to a single state at high excitation, but 
a secondary peak may also be seen having about a quarter of the strength of the upper 
state. Empirically, one observes the two pieces of the GT strength in light and medium- 
heavy nuclei, and the relative strength agrees with theory (Bertsch et a/ 1981). However, 
in heavy nuclei the observed strength is a single continuous peak extending to lower 
energies. Here there must be mechanisms beyond mean field theory that are important 
in spreading the strength. 

E (MeV1  

Figure 12. Gamow-Teller transition strength for (p, n) reactions on '''Pb; the thin vertical 
lines represent the independent particle response and the broader bars are the collective 
strength obtained in the random phase approximation (from Sagawa and Van Gai 1982). 
(Used with the permission of the authors and North-Holland Publishing Company.) 

Another way to view the fragmentation in mean field theory is to start from the 
independent particle picture, which may have transitions between orbits near the Fermi 
level. Not all of the strength of these low-energy transitions is taken away by the GT 

state. Equations (5.12) and  (5.13) may be used to estimate the remainder by treating 
(1 - uII( ' ) (E)) - '  as a number that renormalises the strength. The II"'(E) varies with 
energy as 1 / ( E  - E, , ) ,  where E l ,  is the excitation energy in the independent particle 
model. To have the GT state at E,, requires 1 - uII'"( EGT) = 0. Then 

E - El, ( 1  - urI'O'(E))- '=- .  
E -  

(5.33) 
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Typically EIP- E = 3 MeV and EGT- E = 10 MeV, so the strength for the low-lying 
transitions is reduced by a factor of three. This renormalisation in fact was the main 
empirical evidence available when Ikeda et a1 (1963) first proposed that the GT strength 
might be concentrated in a state at high excitation. 

5.2.3. RPA and p' transitions. The full RPA treatment is required for the mean field 
theory of the p' transitions. This is because the correlations that suppress the low- 
energy transition strength are not contained in the particle-hole spectrum of the p' 
operator. The correlations are associated with the GT resonance, which is only reached 
by the p -  operator. The mean field theory using the full polarisation operator includes 
both kinds of excitations. The p' spectrum can be viewed as an extension of the p -  
spectrum to negative energies in RPA theory. The suppression of strength will not be 
quite as large in the p' case because the energy differences in (5.33) are larger. For 
example, in the nucleus 60Ni the RPA calculations of Auerbach et a1 (1982) predict a 
factor of 2 suppression with respect to the independent particle model. 

As mentioned earlier, the mean field theory is not reliable for open shell nuclei, 
because of the strong configuration mixing. Some of the correlation effects can be 
incorporated into the theory by using a quasi-particle basis to treat pairing correlations 
(Kisslinger and Sorensen 1963). The pairing suppresses the quasi-particle transitions, 
which would be the lowest in the spectrum, but the total p' and p -  strengths are not 
much affected. A systematic study of the p' strength in open shell nuclei was recently 
made by Cha (1983). The RPA correlations suppress the low transitions by a factor of 
3 to 10 with respect to the independent quasi-particle model. However, observed 
transition strengths are even more suppressed, typically by an additional factor of 4. 
Because only the very lowest states can be seen by p decay, the empirical knowledge 
of the p' strength function is not sufficient to tell what is wrong with the quasi-particle 
RPA theory. 

5.3. Hamiltonian diagonalisation 

Wavefunctions constructed from Hamiltonian diagonalisation in a multi-particle 
configuration space can provide accurate and detailed information about the response, 
much superior to what can be achieved with other methods. We shall not describe 
how the calculations are performed. The interested reader is referred to the review 
article by Wildenthal (1984) for details. Unfortunately, the method is only reliable 
when the configuration space covers the complete set of configurations in the active 
major shell. Excepting nuclei near shell closures, this limits the applicability to the 
ranges 5 < A  < 14, where the p-shell is active, and 17 < A < 39, where the sd-shell is 
active. For p-shell nuclei, the first study based on complete diagonalisation of the 
major shell was the work of Cohen and Kurath (1965), and their wavefunctions still 
serve as a useful theoretical reference. With only interactions among the p3,2 and p l l r  
orbitals to be considered, the energies of known states provide enough information to 
determine the Hamiltonian, at least its central part. 

The general characteristics of the spin-isospin response, namely the suppression 
and the shift to higher energy as compared with the independent particle shell model, 
may be easily seen in the p-shell results. The nucleus 12C, located near the middle of 
the p-shell, provides a good example. The strongest transition for the CTT operator is 
the 1' ground state of I*N, which is the isobaric analogue of a state at 15.1 MeV in 

C .  In the independent particle shell model, the ground states of "C and "N have I2 
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configurations (pXI2)' and  ( ~ ~ / ~ ) ' p , , ~  respectively. The excitation energy of this state 
is nearly twice as large as it is in the independent particle picture, where the energy 
would be due  entirely to the spin-orbit splitting between the p l I 2  and  the p3/2 shells. 
The transition strength of the UT operator, as measured in /3 decay, is 1.00, to be 
compared with the value 4 that would be obtained from the independent particle 
picture. Thus the suppression relative to the shell model is a factor of 4. This is in 
good agreement with the predicted suppression from the Cohen and  Kurath wavefunc- 
tions, which give values ranging from 0.92 to 0.97. The physics behind this suppression 
is quite simple. The two-particle interaction in the Hamiltonian tends to pair off the 
spins in the "N ground state, preventing the UT operator from making transitions. 

Another interesting p-shell transition is the I4C to I4N transition, illustrating that 
apparently allowed transitions can be nearly totally suppressed by configuration mixing. 
The GT p decay of I4C to the ground state of I4N is hindered with respect to the pure 
configuration transition from ( P , / ~ ) ~  to (pl ,2)2 by a factor of lo5. In this case the Cohen 
and Kurath wavefunction only predicts a hindrance by a factor of 10, which comes 
about by an  interference of amplitudes from different configurations. When the cancella- 
tion is nearly complete the hindrance factor is very sensitive to the details of the 
Hamiltonian, such as the tensor interaction (Zamick 1966), and an  accurate calculation 
is not possible. 

The sd-shell has a much more complex spectroscopy than the p-shell, with the 
dimensionality of configurations ranging up  to several thousands in the middle of the 
shell. Nevertheless, it has proved possible to carry out the same program as for the 
p-shell. Wildenthal and his collaborators determine a two-particle Hamiltonian by 
fitting energy level data, and  then use the associated wavefunctions to predict all 
interesting observables. The results for the CTT operator are given by Brown and 
Wildenthal (1985). The accuracy of the Hamiltonian model is illustrated in figure 13, 
showing the computed UT strengths compared with the strengths measured in ,f3 decay. 
The units on the graph are chosen so that the points would fall on the diagonal for 
perfect agreement. There is a very strong correlation between the predicled and the 
measured values. However, the best fit requires the UT operator to be renormalised 
by an  overall factor of 0.77 in amplitude or  0.6 in intensity. The scatter seen in figure 
13 is considerably reduced if the transition strengths are summed over observed final 
states. This is to be expected because the Hamiltonian is better at describing the overall 
distribution of strength than its apportionment among nearby levels. 

The reaction 26Mg(p, n)26A1 illustrates a rather complex spectroscopy of the U T  

operator that is nevertheless well described by the multi-configuration shell model. 
The cross section for this reaction was measured by Madey et al (1987) and compared 
with theory. Many states are excited and the relative strengths of nearby configurations 
have no significance, so the strength distributions were artificially smoothed. The result 
is shown in figure 14. There are several concentrations of strength in the spectrum. 
The peak at low excitation energies is associated with transitions leaving the particles 
in the same shells, and  the peak at  high excitations is dominated by transitions from 
d5,2 to d3,2 orbits. The relative strengths and  energy distributions agree very well with 
theory, but only the calculated strength function is renormalised by the factor 0.6. 

The Hamiltonian diagonalisations in the sd-shell can also be used to study aspects 
of the strength functions not directly observable. Thus the p' strength function is 
poorly known compared with our extensive knowledge of the p- from the (p,  n )  
reaction. As discussed earlier, one would like to know the total p' strength, in particular 
the suppression in comparison to the independent particle strength. The sd-shell 
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Figure 13. Comparison of experimental Gamow-Teller ( G T )  matrix elements for sd-shell 
nuclei with the predictions from diagonalisation of the multi-configuration shell model 
Hamiltonian (from Brown and Wildenthal 1985). The matrix elements are normalised so 
that one corresponds to the maximum permitted by the shell model space. For perfect 
agreement the points should lie on the diagonal line. They actually cluster around a line 
with a slope of 0.77, showing the overall quenching of the spectroscopic GT strength. (Used 
with the permission of the authors and Academic Press.) 

diagonalisation provides some predictions here; for example, in the nucleus 22Ne the 
p' strength is suppressed by a factor of 10 in comparison with the pure configuration 
(Brown et a1 1981). Evidently, each proton is very likely to be spin-paired with some 
neutron in the configuration-mixed ground state. 

Beyond the sd-shell, the multi-configuration calculations have necessarily been 
incomplete. Bloom and Fuller (1985) have calculated p' strength functions in the 
fp-shell in as large a basis as was feasible. These transitions are particularly interesting 
because of their role in stellar collapse. The core of a supernova precursor is rich in 
fp-shell nuclei such as iron. During the collapse, inverse p decays occur, eventually 
leading to a neutron star, unless a black hole is formed. The detailed dynamics of the 
collapse process is sensitive to the inverse p decay rates (Bethe er a1 1979). 

Bloom and Fuller were unable to perform complete shell model diagonalisations 
in the mid fp-shell, but they could determine the structure of the strength functions 
associated with simple initial configurations. They found that most of the strength 
occurs at low excitation energies in the residual nucleus, in the range of 2-4MeV 
above the ground state. Unfortunately, the calculations give no information about the 
total strength, because the simple initial configurations do not allow spin pairing to 
develop. 

Muto (1986) has made a similar study limited to nuclei with N = 28. The initial 
configurations start from pure f7,2 configurations, but Muto allows up  to two-particle 
excitations out of the f7,* shell. His results confirm the previous findings that the 
strength is concentrated within a few MeV of the ground state. Because of his larger 
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Figure 14. The excitation function for the Gamow-Teller (GT) operator in "Mg (from 
Madey er a1 1987). The full curve is the strength as measured in the forward-angle (p ,  n)  
reaction using 134 MeV protons. The broken curve is the prediction of the multi- 
configuration shell model. The discrete states in both spectra have been artificially smeared 
to make it easier to see the overall behaviour of the strength function. The dotted curve 
is the theoretical curve renormalised by a factor of 0.57. (Used with the permission of the 
authors prior to publication.) 

configuration space, he is able to see quenching of the total strength. He finds that 
the total strength is reduced by a factor of 0.5-0.6 compared with the pure configuration. 
Thus, with an additional renormalisation of 0.6 that must arise from outside effects in 
the major shell, a quenching to 0.3-0.4 of the pure configuration may be expected. 

6. Gamow-Teller strength function 

6.1. Measured Gamow- Teller strength 

Initial measurements of the p -  strength in (p, n) reactions determined values for the 
total strength that were a fraction of the sum rule bound. For example, Gaarde et a1 
(1981) compared their measured cross sections with an absolute D W I A  calculation 
based on the Love and Franey t matrix interaction and the optical potential of Nadasen 
et al. The measured cross section in the peaks of the forward-angle spectra was only 
30% of the sum rule prediction from the DWIA analysis. However, it is clear that the 
DWIA theory is not reliable enough to be used in an absolute sense. A much safer way 
to analyse the data is to normalise the (p,  n) reaction cross sections to known p 
transition rates. Gamow-Teller /3 decays with large transition rates are only found in 
the lighter nuclei, so the renormalisation can be done very reliably there. As we saw 
in figure 14, the strength to higher states corresponds very well with the shell model 
prediction if the same renormalisation is applied to the entire spectrum. There are no 
additional peaks in the spectrum to account for the missing strength. Using this kind 
of analysis, Goodman and Bloom (1984) concluded that 50-60% of the sum was 
present for nuclei in the range A = 13-90. 
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In  heavier nuclei there is no possibility of resolving individual states, and the 
analysis is based on spectra that appear continuous. In  the first analyses, the cross 
section for the main GT peak was extracted assuming a smooth background underneath 
the peak. The background was drawn to join onto the yield at higher excitation 
energies, where the spectrum is quite flat. This procedure was criticised by Osterfeld 
(1982), who calculated the inclusive (p, n )  cross section in the DWIA,  including many 
multipolarities of transitions in the independent particle shell model. He  found that 
the higher multipoles, notably L = 1, could explain most of the forward-angle yields 
at higher excitation energies, above the GT peak. However, these multipoles gave a 
negligible contribution at the peak energy and  below, as shown in figure 15. There is 
therefore no justification for extending the background down to the GT peak region. 
It was then verified from the experimental angular distribution that essentially all of 
the cross section in the peak region has an  L = O  character. When the dubious 
background subtraction is omitted, the sum for heavy nuclei falls in the range of 
50-60% of the bound. This is illustrated in figure 16 (from Gaarde 1985). 

The next obvious place to look for missing GI- strength is in the continuum, above 
the peak. This is not an  easy task from an  experimental point of view, because it is 
difficult to extract unambiguous information from featureless cross sections. Also, the 
cross sections will be reduced by momentum mismatch effects unless near-relativistic 
beam energies are used. To make any sort of analysis, the measured yield in the 
continuum region must be compared with some expected yield in the absence of GT 

strength. One possibility is to compare with the experimental background from a target 
nucleus having zero neutron excess. This technique was used by Goodman er a1 (1981), 
comparing targets of 42Ca with 40Ca. The nucleus 42Ca has a neutron excess of two 

I I I 

'Ya i p, n)''Sc 

E =  160 MeV 

-Q i p , n )  ( M e V )  

Figure 15. Zero-degree spectrum for 160 MeV (p, n) reactions on 48Ca (from Osterfeld 
1982). The full curve represents the experimental data. The broken curve is an arbitrary 
smooth background. The chain curve is the calculated background from higher multipoles 
( A L a  1).  It accounts for the experimental background at high excitations when scaled by 
a factor of 1.33 (- .. -). (Used with the permission of the author and the American 
Institute of Physics.) 
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Figure 16. Fraction of the Gamow-Teller strength sum rule observed in (p ,  n)  reactions 
on  different targets; for heavier nuclei the full  points represent the strengths concentrated 
in peaks, whereas the shaded region also includes the strength under  the collective states 
( f rom Gaarde  1985). (Used with the permission o f t h e  author  and  North-Holland Publishing 
Company.) 

with a strong GT transition to a low I f  state in 42Ti. The strength to this state is 45% 
of the sum rule bound. The bound is zero in 40Ca, which has equal nuinbers of protons 
and neutrons. Thus any forward-angle (p,  n) cross section on this target is unrelated 
to a neutron excess. Goodman et a1 subtract the 40Ca spectrum from tine 42Ca spectrum 
to see the effect of the neutron excess in the continuum. They find that the difference 
in the spectra is small above 30 MeV excitation. By identifying specific peaks, they 
conclude that only 50% of the sum rule is present in the spectrum. However, their 
plot of the difference spectrum shows a consistent excess up  to 30 MeV excitation. 
The energy-integrated cross section in the entire region above the low peak is nearly 
equal to the cross section in that peak. If the excess were L = 0, over 80% of the sum 
rule bound would be present. 

Analysis of the continuum region can also be made based on specific models for 
the background. Scholten et a1 (1983) calculated the shapes of a quasi-elastic scattering 
background as well as the individual low multipoles. Only the L = 0 multipole has a 
peak at forward angles. The data on "Zr in the excitation energy region of 30-50 MeV 
are peaked at  zero degrees, so some L = 0 is necessary to reproduce the experiment. 
However, this analysis cannot be used quantitatively because it did not take into 
account the dependence of the interaction on the momentum transfer. A more detailed 
analysis was made by Klein et a1 (1985), who used the full D W I A  theory. They also 
concluded that the continuum contained excess L = 0 cross section, but were unable 
to quantify the amount. The thorough study of Osterfeld et a1 (1985), which we 
discussed in 5 3.3, concluded that the overall spectrum is completely consistent with 
the DWIA and  a strength function that is only modified from the RPA by introducing 
additional spreading. All of these analyses assume that the D W I A  is valid, i.e. multi-step 
reactions can be neglected. This point has been examined by Kronenfeld et a1 (1983) 
and Esbensen and Bertsch (1985). The multi-step reaction cross section depends 
strongly on beam energy; for 200 MeV protons it can contribute 5-10% to the forward- 
angle cross section at  the GT peak. 

In conclusion, we can say that at least 60% of the GT strength can be identified in 
the spectral range from low excitation energy to the giant GT peak. There could well 
be additional strength in the continuum above that, but a convincing demonstration 
does not seem possible with presently available experimental tools. 
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6.2. Theoretical discussion: subnuclear degrees of freedom 

Much interest is engendered by the missing-strength question because of the implica- 
tions for mesonic and other subnuclear degrees of freedom in nuclear structure. Ericson 
et a1 (1973) first made the suggestion that mesonic effects would suppress the GT 

strength. The argument was made concrete by Rho (1974), who identified the delta 
isobar excited state of the nucleon as the mediator of the subnucleonic influences on 
the spin-isospin response. The delta affects the strength in the nuclear structure domain 
in the same way as the higher-energy particle-hole configurations modify the low-energy 
transitions, taking strength away from them. In  fact, the delta influence can be 
calculated with the identical RPA formalism, just introducing extra delta-hole states 
built from delta single-particle wavefunctions. The magnitude of the effects are of 
course crucially dependent on the nucleon-delta (NA) interaction. A schematic picture 
of the independent particle strength function including delta-hole excitations is shown 
in figure 17. 

<- 300 M e V  -> 
Figure 17. A schematic picture of the Gamow-Teller strength function, including the 
delta-hole excitations in the spectrum. The overall strength in the delta region is higher 
because there are no Pauli restrictions on the excited nucleons. Depending on the coupling 
to the states in the spectroscopic region, the residual interaction may shift substantial 
strength out of the low states. 

Unfortunately, only the pionic part of the interaction is known with any confidence, 
so conclusions about the delta effects are subject to considerable uncertainty. The 
long-range pionic interaction is known from the A +  Nrr decay and can also be related 
to the N +  Nrr interaction by the constituent quark model. A model can be built for 
the rest of the force by assuming that all parts of the interaction scale to the N N  
interaction in the same way as the pionic component. This is ‘universality’. The 
universality argument was important in the question about the existence of a pion 
condensed phase of nuclear matter; for a general review see Oset et a1 (1982) or 
Meyer-ter-Vehn (1981). Hamiltonian models having only a pionic coupling of deltas 
predicted a phase transition to a different state of nuclear matter, the so-called pion 
condensate, contrary to empirical evidence. Models containing a repulsive component 
obtained from universality gave no phase transition under experimentally realisable 
conditions. It is this repulsive component that would be responsible for the suppression 
of the GT strength in the low-energy nuclear spectrum. A schematic model showing 
how the suppression works under universality was constructed by Bohr and Mottelson 
(1981). Arguing phenomenologically they arrive first at the empirical N N  isospin-spin 
interaction, and  then show that universality implies that 25% of the strength is lost 
from the low-energy spectrum by the coupling to the delta. 

More recently, the universality assumption has been severely criticised. Arima er 
a1 (1983) constructed a microscopic model of the NA interaction based on rr and p 
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meson exchanges. The exchange term provides the repulsive component of the interac- 
tion at small momentum transfers. They find that the exchange term behaves quite 
differently than in the NN interaction because the delta has different quantum numbers. 
The result is a substantially weaker repulsion, and the quenching from the delta amounts 
to only a few per cent. This result has been confirmed in a microscopic G matrix 
calculation by Sagawa et a1 (1986). Thus the theoretical argument for delta quenching 
is less persuasive. 

Before turning to more prosaic explanations of the quenching, we mention another 
subnucleonic interpretation. Rho (1984) has recently put forth a radical view of the 
quenching, motivated by fundamental symmetry ideas. The Lagrangian of quantum 
chromodynamics has a near symmetry, chirality, that can be exhibited either by having 
massless quarks as free particles or by having massless pions. Rho speculates that 
pionic degrees of freedom are suppressed in nuclei. The interior of a nucleus would 
be more like a Fermi gas of quarks than a collection of physical nucleons. In this 
limit the Adler sum rule has no pion contributions and it reduces to the trivial 

We remember that the nucleon axial coupling constant for the non-relativistic GT 

operator has t c  be modified by the pions (see equation (5.9)), so the new relation is 

(6.2) 

If this reasoning were correct, not only would the nuclear structure transitions be 
quenched by the factor l / g i  = 0.63, but the entire strength function at delta excitation 
energies would disappear. In principle this speculation could be tested by neutrino- 
induced reactions. However, there is abundant evidence that deltas d o  not disappear 
in the nucleus. Some of it will be presented in the last section. 

c l(flP;li)12 = 3 ( N  - Z ) / g i .  
flr 

6.3. Theoretical discussion: conjiguration mixing 

It is possible to explain the quenching of the spectroscopic GT strength without invoking 
any subnuclear degrees of freedom at all, as we saw with the analysis of Osterfeld et 
a1 (1985). The RPA theory and  the shell model calculations we discussed in $ 5 neglect 
configurations involving higher shells. These may take strength away from the lower 
energies if the interaction is strong enough. This possibility is easiest to study theoreti- 
cally in nuclei with a very simple structure, as close to closed major shells as possible. 
This was done by Shimizu et a1 (1974), who calculated the spin properties of light 
nuclei removed by one nucleon from shell closure: A = 15, 17, 39 and 41. Including 
in their configuration space all states that could be reached by exciting two particles 
to higher shells, they found that the non-central interaction removes about 25% of the 
strength to high excitations. 

Later studies incorporating both configuration mixing and delta excitations were 
made by Oset and  Rho (1979) and  Towner and Khanna (1979). The first work assumed 
universality and  a limited configuration space for the configuration mixing. They 
concluded that the delta mechanism was the more important. Towner and Khanna, 
on the other hand, using a large configuration space and a microscopic treatment of 
the NA interaction, came to the opposite conclusion. 

A more phenomenological argument has been made by Brown and Wildenthal 
(1985). They fit the effective spin operators in the spectroscopy of sd-shell nuclei and 
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find that the isoscalar and  isovector spin operators are quenched by similar amounts. 
The isospin of the delta prevents it from affecting the isoscalar operator, leaving the 
configuration mixing as the most important influence. It is plausible to attribute a 
similar quenching to that source for the isovector spin operator as well. According to 
Brown and  Wildenthal, the comparison of the quenching in the two cases suggests 
that the configuration mixing and the delta isobar mixing have comparable importance. 

These studies concentrated on the depletion of strength in the low-energy transitions, 
but did not examine in detail the distribution of strength to be expected at high 
excitations. This aspect was studied by Bertsch and Hamamoto (1982) and  Takayanagi 
et a1 (1985), who calculated the configuration-mixing effects on the intermediate-energy 
strength in the (p, n) reaction on 48Ca. They found that substantial strength could be 
expected in the energy region of 10-40 MeV excitations. The ordinary interaction 
fragments the giant GT state over an  approximately 10 MeV wide interval. Other 
microscopic studies of the fragmentation of the giant GT state also show that it gets a 
tail extending to high energies. At very high energies, the tensor interaction is most 
effective at  configuration mixing. 

A simple argument to show that GT strength should extend to high excitations in 
the continuum was made by Ericson (1983). Using a phenomenological relation between 
the axial field and  the pion field, she expresses the GT strength in terms of the absorptive 
optical potential for pions. The empirical pion optical potential gives a large amount 
of strength in the continuum. However, the part associated with the neutron excess 
is only 3% of the sum rule bound. 

The picture that emerges is configuration mixing transferring about 25% of the 
strength to the continuum. Part of this is relatively low in energy, just above the GT 

giant resonance, but there is also a tail that tapers off rather slowly and extends up  to 
energies of the order of the pion rest energy. 

6.4. Other charge exchange probes 

We conclude this review with a discussion of some reactions which have proved helpful 
in elucidating the charge exchange response, besides the differential cross section in 
(p,  n)  reactions. Recently spin transfers have been measured in the (p, n) reaction, 
which is very interesting because of the specific dependence on the spin response. 
Other kinds of projectiles also have been employed in studying the charge exchange 
response. We shall briefly mention the (3He, t)  reaction, the (t, 3He) reaction and the 
(n,  p )  reaction. 

6.4.1. Spin measurements in (p, n).  If only the differential cross section in a reaction 
is measured, the inferences about the spin response are heavily dependent on the 
theory of the response. More direct proof that the GT peak is correctly identified 
requires measuring the spin transferred to the target. Only the projectile spin is directly 
measurable, but in forward-angle scattering the projectile and  target spins can only be 
flipped simultaneously. The forward-angle spin transfer measurement was performed 
recently by Taddeucci er a1 (1986) using a 90Zr target. In this experiment the incoming 
proton is polarised transverse to the beam direction. The polarisation of the neutron 
is measured for orientations parallel and antiparallel to the proton spin. The observable 
is conveniently expressed as the transverse spin polarisation transfer coefficient D N N ,  
the ratio of the polarisation of the outgoing particle and  the incoming particle. In  
terms of the cross sections v,,, for incoming polarisation s and outgoing polarisation 
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s', D N N  is given by 

Obviously, if the reaction is independent of spin, U+- = O  and DNN = 1. Of the 
spin-dependent amplitudes, vK and gN flip the spin, while up leaves it alone. Thus 
if all three components of u have equal amplitudes, DhgV will be given by = 

The spin measurements of DNN for forward scattering give gratifying confirmation 
of the previous interpretation of the L = 0 peaks. In  the region of the GT resonance 
the experiment found DNA, = -0.29 + 0.03, close to the value - $  expected for pure GT 

transitions. This result bears on the background question: if  there were a background 
of spin-independent transitions in the GT region, it would dilute the spin flip and give 
a larger D N N .  The IAS state shows a positive DNN which, however, does not reach 
the theoretical value of 1. In this case the conditions of the experiment do  not allow 
a complete separation of the IAS from its background. The IAS is embedded in the tail 
of the GT resonance, and  some of the cross section in the region has a spin flip character. 

(1 -2 ) / (1+2)  = -4. 

6.4.2. The (-'He, t )  and ( t ,  ' H e )  reactions. As a spectroscopic tool, the (p,  n) reaction 
suffers from the difficulty of measuring neutron energies accurately. The reaction ('He, 
t) also changes a proton into a neutron and  can be measured with good energy 
resolution, since the projectile and  ejectile are both charged. This reaction has two 
disadvantages compared with (p,  n). Because of the strong absorption of a complex 
projectile, it is not sensitive to the interior of the target. Also, an  absolute theoretical 
determination of cross sections is more problematic due to the structural complication 
of the projectile. The spectroscopic characteristics of the reaction should be most 
comparable with the (p, n )  reaction at the same velocity of the projectile and the same 
momentum transfer. Experiments by Gaarde et a1 (1980) showed that even with a 
beam energy of 70 MeV, i.e. 23 MeV (nucleon)-', the reaction is capable of showing 
the GT resonance. 

Unique information has recently been obtained from the (3He, t)  reaction using a 
beam energy of 2 GeV (Contardo et a1 1986). The high beam energy permits excitations 
of the nucleus into the delta region, E,-300 MeV. At this excitation energy the 
longitudinal momentum transfer (which is always greater than the energy transfer 
divided by e )  is very high on the scale of nuclear structure studies. The response has 
no trace of the GT resonance physics, but in principle the experiment provides informa- 
tion on the dynamics of the A inside the nucleus. The results of this experiment show 
the A clearly and are very interesting. Figure 18 displays the spectra of tritons at zero 
degrees, comparing a hydrogen target with various nuclear targets. The hydrogen 
target can serve as a normalisation since the complexities of the projectile response 
will be the same for this as for the other systems. The measured spectrum shows a 
peak in the region of the A, whose energy and  width correspond well to the properties 
of the free A. The interesting findings, which are easily visible in figure 18, are that 
the peak is also present in nuclear targets, while it has shifted about 50 MeV to a lower 
energy. 

In  a theoretical study of this reaction by Esbensen and Lee (1985), it was found 
that the shape and  absolute magnitude of the peak in hydrogen could be understood 
quantitatively by assuming that the spin response of the mass-3 projectile depends on 
momentum in the same way as the point-particle charge form factor. The correct 
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Figure 18. Triton spectra observed in 2 GeV ('He, t) reactions on hydrogen and on different 
nuclear targets at zero degrees; notice the shift of the peak position to a 50 MeV smaller 
excitation energy for reactions on the nuclear targets (from Contardo er a /  1986). (Used 
with the permission of the authors and North-Holland Publishing Company.) 

orders of magnitude of the nuclear target cross section as well as the observed peak 
position are reproduced when an  empirically adjusted self-energy of the A in a nuclear 
medium is used. The ('He, t)  reaction takes place at the surface of the target nucleus, 
and  one might suspect that a microscopically calculated, density-dependent self-energy 
could yield a different result and destroy the agreement with the data. Future studies 
will hopefully resolve this problem. 

We also mention here the inverse reaction (t, 'He). This would provide potentially 
valuable information on the p' strength function,, as discussed below. Unfortunately, 
the highest-energy tritium beam available is 25 MeV, which allows only minimal 
spectroscopic information to be extracted. Nevertheless, the reaction has been used 
to identify states with appropriate spin for GT transitions and  to measure relative cross 
sections (Ajzenberg-Selove et a1 1984). 

6.4.3. The (n, p )  reaction. As discussed in Q 5, the p' operator has quite different 
structural characteristics from the p -  operator in nuclei with neutron excess. The 
residual interaction in the nuclear Hamiltonian tends to correlate all the protons with 
neutrons so that the p' strength is nearly completely suppressed. The amount of 
strength left provides a good test of the Hamiltonian model; the (n, p )  reaction cross 
section is additionally sensitive to A admixtures (Brown and Wildenthal 1983). Experi- 
mentally the (n,  p) reaction is very difficult to measure, and to date the only spectro- 
scopic application in the literature is the experiment by Brady et al(1983) using 60 MeV 
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neutrons on a target of 'Li. In this work it was found that the L = 0 strength is weak; 
in fact the most prominent feature of the spectrum is an L =  1 peak at higher energy. 
For more quantitative measurements of the p' response it is of course necessary to 
use higher-energy projectiles. Recently, an  (n,  p) facility has been constructed at the 
T R I U M F  laboratory in Vancouver that can produce neutron beams extending in energy 
to hundreds of MeV. A preliminary spectrum of a 54Fe target is shown in figure 19 
(from Hausser et a1 1986). There is a prominent peak at low excitation energy, showing 
a substantial concentration of p' strength. With this new capability for (n,  p )  studies, 
it should be possible to answer the questions still remaining about the p' strength. 

120+ 

"Fe i n,p)"M n 

290 MeV, 0" I0:i 80 I 

-20 0 20 40 60 80 

-Q 

Figure 19. The proton spectrum observed in 300 MeV (n,  p )  reactions on S4Fe at zero-degree 
scattering. Note the strength concentration at very low excitation energies (from Hausser 
et a /  1986). (Used with the permission of the authors prior to publication.! 
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