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NONRELATIVISTIC THEORY OF HEAVY ION COLLISIONS

G, Bertsch

Department of Physics
University of Tennessee
Knoxville, TN 37996

and

Oak Ridge National Laboratory*
Oak Ridge, TN 37831

INTRODUCTION

A wide range of phenomena is observed in heavy ion collisions,
calling for a comprehensive theory based on fundamental principles of
many-particle quantum mechanics. At low energies, the nuclear dy-
namics is controlled by the mean field, as we know from spectroscopic
nuclear physics. We therefore expect the comprehensive theory of
collisions to contain mean-field theory at low energies. The mean-
field theory will be the subject of the first lectures in this chap-
ter. This theory can be studied quantum mechanically, in which form
it is called TDHF (time-dependent Hartree-Fock), or classically,
where the equation is called the Vlasov equation.

At high energies the mean field becomes insignificant in com-—
parison with the effects of nucleon-nucleon collisions. A proper
theory needs to include collision effects, as is done in the classi-
cal theory of gases with the Boltzmann equation. The lectures will
g0 on from mean-field theory to the derivation of theories incorpor-
ating collisions. Again, there are both quantum and classical ex~
tensions of mean-field theory. The classical equation turns out to

=
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278 G. BERTSCH

be just the Boltzmann equation with a Pauli blocking factor in the
collision integral, and is called the Uehling-Uhlenbeck equation.
However, the collisional theories must be regarded as tentative, be-
cause the assumptions made in their derivation cannot be given firm
justification, as will be seen. Also, the evaluation of such
theories and comparison with experiment is still in an early stage.
In the last year, considerable progress has been made in the numeri-
cal solution of the Uehling-Uhlenbeck equation, and the techniques
will be described in the last lectures. The physics of the heavy-
ion collision looks quite different with and without nucleon-nucleon
collisions; even at moderate energies, the collisions tend to bring
a rapid approach to local equilibrium in the nuclear medium.

DERIVATION OF MEAN-FIELD THEORY

This lecture will present a derivation of mean-field theory that
is readily extended to collisional theories. The starting point is
the Hamiltonian which we will assume, for the present, contains only
kinetic energy and two~particle interactions. We write the
Hamiltonian in second quantized notation as

i = i):j alr]p alaj +§ 1‘:3 dj|v| e aIa;azak. (1)

k,2

The indices i,j label a convenient complete set of single-particle
states. The second quantized formalism is used because it is the
easiest way to deal with the antisymmetry of the wavefunction, which
will be nontrivial in the later development of the theory. The wave-
function satisfying the Hamiltonian (1) will be denoted by ¥(t); if
we knew ¥, the problem would be solved. We shall set ourselves the
more modest goal of determining the one~body density matrix, p. This
is defined by its matrix elements

p,, ™ <¢!a1aj| » 2)

13

The equation of motion for the density matrix is the relation satis-
fied by its time derivative; this is evaluated using the equation of
motion for Y and w*,

B9 =1 -§?| Wi <Y|H = -i8/3t <y]. (3

The result is the usual commutator formula,

@ 1 n
P1y = <‘1’|[afaj,ujlv» -

1 ¥ & t -~
ot <\P|[ai,ll]aj + ai[aj,ﬂ]l¢>
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The commutator of the kinetic energy operator with a creation or
annihilation operator is a linear combination of such operators,

[a,,T] -Zj:<1] 1| 9 s
& (5)
[aI,T] - -§:<j [ T| 1> ajT

The kinetic energy contribution to the equation of motion is then

P <4I[ [ai j,T]HP

i3

kinetic

1 ¥ t
=T <w|-§ «|T[D aa, +)E<j|1:]k> aa | W
=%Z{<j|'r|k> P — KITID o } (6)
K

Note that the only information required about the wavefunction in Eq.
(6) is the single-particle density matrix,

Equation (6) can be simplified further by making a suitable
choice of representation. If we use momentum eigenstates for our
basis, the kinetic energy will be diagonal, and the density matrix

obeys the simple equation,

£ 4%

P,° P
Y pai: B 7
i(2m 2m>pij 3

The commutator of the potential with the density operator is
more complicated, requiring the expectation value of operator pro-
ducts with quadruple Fock space operators,

<vllala, Vilp =1 3 «iklv)m> - (kle[&n))(\lea a, a a | w
14 2 2. X5

1
ta k;m (<4m| V| ik> = <n|V]ki>)<V|a a T N
» 7y

kinetic

At this point, we are ready to derive mean—field theory. The funda-
mental approximation is to evaluate the expectation of the four-
particle operator by a product of single-particle demsities,

t t
<¢|aiajakaz[¢> ~ <¢[aia£llv><¢|ajak[¢>
- <¥]aja | D<vjaja,| ¥ 9

P12k T PixPyec
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Equation (9) is the Hartree-Fock approximation to the two-particle
density matrix. It is exact if the wavefunction is a2 Slater determi-
nant of single-particle wavefunctions. The antisymmetry is explicit
with the two terms on the right; if k and % are interchanged, the ex-
pectation changes sign. The first term alone is the Hartree approxi-
mation; it requires that a physical distinction be made between 1i,%
states and j,k states. The approximation is good for treating the
two~particle density for particles in widely separated parts of the
system if there are no long-range correlations in the wavefunction.

The Hartree-Fock two-particle density matrix cannot be correct
for particles close to each other when the interactions are very
strong, but it might still serve as a useful approximation if the
Hamiltonian is appropriately modified. 1In that case, the theory
will be called the mean-field theory.

Inserting (9) and (6) in Eq. (4) gives a closed equation of
motion for the single-particle density matrix. It is convenient to
write this in terms of a single-particle potential, U, defined by

the matrix elements

Glulo =3 (Grlvim - <gklvla)e, (10)
km

Then the potential interaction commutator is

<¥| [aya,. 71| §k: (<3 luoey, - b, &lulD) (11)

and the equation of motion can be expressed in terms of a single-
particle Hamiltonian Hyp

. 1
Py =1 oy Glfglio - <lig] o] (12)

where Hyy = T+U. Equation (12), together with (10), defines the
time~dependent Hartree-Fock approximation. There are two particular
representations for Eq. (12) that are useful for numerical calcula-
tions or for further approximation. The first representation is ob-
tained by expanding the density matrix as a sum over dyadic
matrices,

N a* _a

Then Eq. (12) is solved if the b satisfy

dp?

-y 1 a
a—ti = i}k:q | 1> b (14)



NONRELATIVISTIC THEORY OF HEAVY ION COLLISIONS 281

In coordinate space, the vectoerf;i j> is just the single-particle

a
vavefunction ¢ (x). The coordinate space representation is especial-
1y vseful if the potential U is approximated by a local function of

position.

Another useful representation uses the Wigner function. This is
defined as a certain Fourier transform of the density matrix, start-
ing from either the coordinate space or momentum space representa-
tion,

- =
f(p,r) =fds eip " p s (15a)
r +3,r ~3

"
d =iger
£(p,r) = | =2 P (15b)
R (2m3 ° p+a,p -3

The Wigner function has all the properties of a classical phase space
distribution function while remaining a quantum-mechanical density.
For example, the ordinary spatial density 1is obtained from f by in-
tegrating over p,

- >
dp £( [ dp > ipe°*s
pP,r) = ds e p
(2m3 " (2m)° e F G =g

=fd; e | (16)
) o +-§,r - =

= - r)e
or,r p(r)

It is also easy to show that the expectation of the momentum and ki-
netic energy are given by the integrals over f:

>
> - + d 4 > >
<p> .[dr —P——(Z“)3 p f(p,r)
(17)

%5
> _dp__p?
<> =fdr (—21121)—3' o f(p,r)

We now express the mean-field equation of motion in the Wigner
representation. This may be done by taking the time derivatiw‘a of
the definition of the Wigner function, Eq. (15), and substituting the

equation of motion for 8,
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df(p,r) _ 1 [ dq_ -iqr
t i_}r(gu)§ [o ’HMF] + 34

zyp =
-iq* -
- _('i-?rﬁ T {lp,1] + [p,u]} g (18)
P +%sp -3
kinetic potential

The momentum representation has been used for p, which allows the
first term in Eq. (18) to be evaluated with Eq. (7),

g iq T A 9 -iq‘r p*q
(2m 3 € [D,T] 3 m P

) +da~4 J o p+dp -1

(19)

The factor ;e-iq T in the above integral is replaced by ﬁr e-iq°r.

Next, the gradient operator is moved outside of the integral, leaving
an integral which is proportional to the Wigner function,

of g —iq°r p‘vr 0
& kinetic (2m)? L™ g = 92-
. >
= -Vr .._3_3 g 1 [ % o (20)
(ZW) P +£sp o %

i « P
Vr o f(p,r)

The second term in Eq. (18) can only be simplified under re-
stricted assumptions. Let us first assume that the mean-field poten-
tial is local in coordinate space

& |u| £ = 8(r-r) u(r) (21)

In general, this is not true for the exchange potential. It will be
true if the interaction is zero range, and it is a reasonable approx-
imation in any case. The effects of the nonlocality can be incorpor-
ated into the theory in other ways, such as with the effective mass,
which will not be discussed in these lectures. The potential term in
Eq. (18) is evaluated in the coordinate space representation, using

Eq. (21)9
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k4 = --}_.'[d; eip's (U(r +%] - u(r —32]) p 2

& potential

(22)
The lefthand side can be expressed in terms of the Wigner function by
using the inverse Fourier transform of Eq. (15a), and the result is
an integral over the Wigner function for all values of p. With one
additional approximation, the theory simplifies much further. We as=
sume that U 1s a sufficiently smoothly varying function of r to per-
mit truncation of the Taylor series for the U factor by the lowest
nonvanishing term,

U(r+s)-U(r - 3) = A (23)

We insert this in Eq. (22) and use the same trick to convert the s
factor in the integrand to a gradient which can be taken out of the
integral. The result is identical to the potential term in the
classical Liouville equation for the single-particle distribution
function in the field U. The final equation is that Liouville equa-

tion,

S f+R . TE-VyTE =0 (24)
t m T o P

With U the self-consistent field associated with f, Eq. (24) is known
as the Vlasov equation. It is remarkable that quantum physics only
plays a role in the initial conditions on f. The initial f must re-
spect the Pauli principle, e.g. be based on a Slater determinantal
nany-particle wavefunction. In ground state wavefunctions, f will

be close to 1 in occupied regions of phase space and close to zero
outside. But the identity of the particles plays no role beyond the

initial conditions.

Conservation Laws

Conservation laws are very important in areas of physics for
vhich the dynamic equations are difficult to solve. When one devel~
ops a simplified theory in such areas, the requirement that the
theory respect the conservation laws is often sufficiently stringent
to be helpful in formulating the theory. For the physics of heavy-
ion collisions, the most important conservation laws are for particle
number, momentum, and energy. Mean-field theory passes the test of
satisfying these conservation laws. This is easy to show for the
case of particle number, which is defined in the three representa-

tions as
3 * ” a3 3
N =§ Pii =Za:fd r ¢a(r)¢a(1’) -[E-I)Lg a°r f(p,r) (25)

The proof that N is conserved proceeds by taking its time derivative
and evaluating the righthand side using the equation of motion. In
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the density matrix representation, this yields
dN . 5
at '?511 =7 Bygoely =0 (26)

The last step follows by the symmetry of the commutator. In the par-
ticle wavefunction representation, the conservation law proof relies
on the Hermitian character of HMF’

* *
dt - }: d3 [% P HMF¢G] =0 (27)

Finally, in the Wigner representation, the conservation law is

- _L r[_B.vf+vU.vf]
dt (273 noor r o p

3
[L%/fﬂ-dzr+fd3r[ vy =0
(27) m (2m)* T

with the last step obtained by evaluating the surface integrals at a
large distance or momentum, where f=0.

(28)

The conservation law for momentum depends on the translational
invariance of the potential interaction in the Hamiltonian. We made
certain approximations in the treatment of the interaction when we
derived mean—-field theory. The theory will conserve momentum as
long as those approximations preserve translational invariance. To
illustrate this, let us assume a generalized interaction,

V --l[d r d3¢r” p(r);(r') vz(r,r')
(29)

1 L d ;. o o Ed o Edd Ed ,r
+§-fd3r d3r” a3”” plr)e(r")o(x )v3(r,r B )+ uin

Neglecting exchange terms, the mean field associated with the above
interaction is

U(r) =~/d r’ p(r‘)(vz(r,r’)+v2(r',r))
(30)

1 e P L ”, e ~ b ,r
+—3[d3r a3c”” o(r")e(r )(v3(r,r T )+v3(r LY J

+ v3(r',r“,r)) + e

We now examine the equation of motion for the total momentum, In the
particle wavefunction representation this is
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dp 4 * [ 7-¢
-4 3 =¥
dt dt Z 47r 'pa [21 ]%

pfer a5 4

The commutator of the momentum operator with the kinetic energy van-
ishes, and the commutator with U is proportional to the gradient of
7,

(31)

>
i A 7
= 4% ply) er (32)
Translational invariance of the interaction implies that
(VI' # Vr‘ + ---)Vm(r,r‘,...) =0 (33)

The integral in Eq. (32) can be shown to vanish using Eqs. (30) and
(33).

The mean—-field theory with the generalized interaction Eq. (29)
also conserves energy. To prove this, we start by expressing the
energy as the expectation of the Hamiltonian, using the mean-field
density matrix and neglecting exchange terms,

E = Z d3r ¢ T¢ + —= [d ; d3 (r)p(r’)vz(r,r’) +_;ftoot

(34)
The equation of motion for E becomes
@_ =_ 3 3 - - -
5 % o1, .S +]d r a%c” B(x)e(r v, (r,r")
+fd3r a3’ a3 ... (35
B )

d3r a(x) U(x)

The second and later terms in this equation can be combined, and the
coefficient P is equal to the mean field. Finally, @ is evaluated
by the equation of motion, yielding

Z a3 q) [T’H}m]q’a’*%z d3r 4’:; [U,Hm,]‘#a

t
(36)

"'Z 2 o a [Py Py 1%
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Having disposed of the global conservation laws, we now inquire
about the existence of local conservation laws, in which the density
of a conserved quantity is related to its flux. In that form the
conservation laws are of quite direct value, because one of the ob-
jects of theory is to calculate the transport of the various con-
served quantities from one nucleus to another. To establish a local
conservation law, we first define the density whose integral is the
globally conserved quantity

Q -[dar q(r) (37)
>

Then a local conservation law will exist if a current j(r) can be
found so that the equation of continuity is satisfied,

% + aoj' = (0 (38)

In the law for the conservation of the number of particles, the den-
sity and current have their usual quantum—mechanical definitions,

o(r) =Y 6y 0, (39)
a

» (2]

Hr) = 2:¢ (21m)¢ (r) = z;—fg m £(P>T) (40)

The equation of continuity is easily derived from the equation of
motion for p. The local conservation law for momentum is less obvi-
ous. The momentum density is defined by

p(r) = mj(r), 1)

and the momentum flux will be deteEmined from the equation of motion.
Evaluating the time derivative of p(r) in the usual way, we find

o 3 [a (B, - ol @

- ¥ o (M M) ~ o(x) Yu(r) (43)

2 2m
U

Only the first term in Eq. (43) has the required form as a divergence
of a vector. The second term can be manipulated into the proper form
under certain assumptions, If the interaction is short range com-
pared to the scale of variation of the density, then U(r) may be
taken to depend only on the density at r, i.e. U(r) = U(p(r) . The
potential energy is then expressible as an integral over the poten-

tial energy density given by
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v(r) -j"(r) dp U(p) C48)

o
ye now define the tensor

=6, (pU-v) (45)
and evaluate its divergence
il = Tou-v) = vdo + ofu-¥ [*7) 4p u(r) = ofu.
o]

This is just the second term in Eq. (43) showing that the required
momentum flux from the potential interaction is given by (45). The
total momentum current is then

5, m EEREARE o 8, (PU=V) (46)

nparticle

where is the particle contribution to the momentum flux,

pperticle, 5~ g (g)(_g:_\?’) 5
o o iy

43 Pupv (47)
- [ e,

In the next lecture, Eq. (46) will be applied to the calculation of
nonentum transfer between colliding nuclei.

Effective Hamiltonians

Because of the strength and spin dependence of the interaction,
nean~field theory cannot be applied directly to the nuclear
Hamiltonian. Correlations are induced between the particles at short
distances which may be important for a fundamental understanding of
nuclear properties but which play a minor role in the physics at low
excitation energies. 1In principle, there are theories such as the
Brueckner theory that allow one to derive an effective mean-field de-
scription starting from a fundamental interaction. However, this
program has not been entirely successful; the predicted binding ener-
gy and nuclear matter density are not in agreement with the empirical
saturation properties. The present-day philosophy is to bypass the
steps to get from a fundamental interaction to an effective mean
field and simply postulate an effective Hamiltonian which satisfles
the known empirical requirements. Some guidance as to the form of
the effective Hamiltonian comes from many-particle perturbation
theory which expresses the binding energy (per particle) as a power
serlies in the Fermi momentum or the cube root of the density,

2 3 4
= + s e
E akF + bkF + C.kF

= 8‘02/3 + b’p + C‘O“/3 + oo

(49)
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The first term is the kinetic energy of a free Fermi gas having the
coefficient a = 3/5 h?/2m., The second and higher terms are due to
potential interactions and correlations. The main empirical con-
straints on the function (49) are that it have a minimum at p = 0.17
fm or krp = 1,34 fm, and that the binding energy at the minimum be E
= =15 MeV. Another constraint that may be invoked is that the com~
pressibility coefficient of nuclear matter be consistent with the em-
pirical vibrational frequency of the glant monopole vibration.
Having three conditions to satisfy, the next two terms in the power
series expansion are overdetermined. We can make a three-parameter
potential model by using the power of p as a free parameter in the
third term. Thus, we consider a mean field of the form

U(p) = Ap + Bp® (50)

The associated potential energy density is

1,2 1 o+l
v(p) 7 AT + o B (51)

The choice 0=2 gives a density-dependent mean field that can be di-
rectly associated with a potential of the form Eq. (29). The proper
compressibility is obtained for a choice 0=7/6. The two mean-field
functions are

stiff: U(p) = -124 (o/p ) + 70.5 (p/po]2 MeV
(52)
Soft : U(p) = =356 (p/oo] + 303 (9/0017/6 MeV

The designations stiff and soft refer to the compressibility coef-
ficients which are K=380 MeV and K=200 MeV, respectively. 1In Figs. |
and 2 are plotted the binding energy and the mean field associated
with these two functions. Figure 1 shows that the functions repro-
duce the proper binding energy and saturation density. The two func-
tions are quite similar at subnuclear densities and only differ sub-
stantially at strong compressions. The mean field is close to -50
MeV for both functions at normal density, in agreement with other
kinds of empirical information about the potential. Notice that the
soft function is rather flat at higher-than-normal densities. This
observation will simplify the discussion of the compressed matter
dynamics.

Heavy-Ion Collisions in Mean-Field Theory

The dominant physics of close collisions between nuclei is asso-
ciated with the mutual exchange of particles between the nuclei.
Nucleons pass freely from one nucleus to the other when they come to-
gether. Particularly with the soft potential field, the field does
not change very much in the overlap region and the motion of the
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Fig. 1. Mean-field potential U(p) for the two functions of Eq. (52).
The stiff and soft potential functioms are shown by dashed
and solid lines, respectively.
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Fig. 2. Energy per nucleon as a function of density. The soft and
stiff functions are shown by solid and dashed lines, respec-
tively.

mucleons is only affected by the extérnal surfaces of the two muclei.
The evolution of the density matrix is shown schematically in terms
of the Wigner function in Fig. 3, The dependence of f on the longi-
tudinal coordinate and momentum is shown with the shaded areas repre~
senting regions with £ = 1. Of course, the actual Wigner function
will have smooth variation instead of the sharp boundaries sketched.
The boundaries in coordinate space represent the physical surfaces of
the nuclei; the momentum boundaries are at the Fermi momentum. Since
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Ap,

~Y

Fig. 3. Schematic picture of phase space distribution of nucleons in
two colliding nuclei. From the top down, picture shows dis-
tribution before, at, and after the nuclei come into con-

tact.

the nuclei are moving toward each other, the distribution functions
for each nucleus have a displacement in momentum. In the classical
picture of the motion, particles are moving within the phase space
boundaries and are reflected at the nuclear surface to stream in
closed loops, as shown by the arrows. Once the nuclei touch, there
is no inner surface to reflect from, and the nucleons pass over to
the other side. This is indicated in the lower two drawings.

The qualitative physics described here is born out quite well by
numerical studies of the quantum and the classical mean-field
theories. %> In Fig. 4 is shown the comparison of one-dimensional
TDHF with the corresponding Vlasov theory from Ref. 3. The two
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Fig. 4, Comparison of TDHF and Vlasov equation for the evolution of
the phase space distribution function in one dimension, from
Ref. 3.

theories are very similar, with the only qualitative difference from
the schematic picture of Fig. 3 being the presence of a hole at p=0
and r=0,

For three—-dimensional geometry, the quantum mean-field theory is
quite difficult numerically, but enough calculations have been done
to survey the range of collision conditions possible. Some reviews
of the theory and comparison with experiment are given in Refs. 4 and
5. 1In general, the theory is successful in describing the energy and
momentum transfer at low energies.

Reduction of Mean~Field Theory to Force Dynamics

Because of the difficulty in treating three-dimensional aspects
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realistically, it is useful to consider simplified treatments. A
semiquantitative description of the mean-field dynamics can be de-
veloped by approximating the momentum flux tensor. This can be eval-
uated at the contact surface between the nuclei to calculate the mo-
mentum transfer. Since the rate of momentum transfer is a force, we
will have a theory for forces between nuclei in close contact. We
begin by choosing a plane to divide space into two regions and define
the conserved quantities associated with each nucleus by integrating
over the appropriate region of space. Labeling the regions A and B,
the momentum, position, and number of nucleons in nucleus A are given

by
> + _ 3 * $-§
P, -L a3 p(r) —%:j; d’r “’a(’ﬂ‘)%

> - 3 b
T, A dr roe(r) (53)

. 3
NA A d°r p(r).

The equations of motion for rp and py may now be determined using the
local conservation laws. Taking the time derivative of the equation

for rp, we replace § by the negative divergence of the current. The
divergence can be integrated by parts, giving a surface integral
which vanishes if we choose the dividing plane so that

dN

A
rraad (54)
The result is the familiar equation
d+ >
r P
A A
e s

The force equation is obtained from a similar set of manipulations,

<>
dp
A
rr fds I (56)

Since the momentum flux could only be defined for short-range inter-
actions, Eq. (56) does not contain the Coulomb interaction, which
must be added separately. Note that Eq. (56) 1s in the form of a
surface integral on the area of contact between the two nuclei.
This form is convenient and physically sensible for discussing the
macroscopic force dynamics. We next evaluate the pressure tensor I
using macroscopic limits., In infinite nuclear matter, the particle
flux contribution to the pressure can be calculated from the geometry
of the Ferml surface. If the potential field remains constant in the
colliding nuclei, the Fermi surface will be in the shape of two in-
tersecting Fermi spheres centered at the momenta of the two nuclei.
The overlap region of the two spheres has the same density as the
other parts of the distribution--refer to Fig. 3 to see how the
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nucleon distributions merge without vioclating the Pauli principle.
The particle momentum flux for the intersecting sphere geometry was
calculated by Randrupll who keeps the lowest terms in a power series
in the relative momentum of the spheres. The result is

(57)

particle . 3 il
Huv B auv constant + 1% % \Y 0 ( o B) n + nu(vA vB)V

where n is the normal to the dividing surface, and vy is the Fermi
velocity. The case vg—vp=0 should represent nuclear matter in equi-
librium, -which has zero pressure. Thus the constant term in Eq. (57)
must be cancelled by the potential contribution to the pressure at
normal nuclear matter density. The cancellation will not be perfect
for nonzero relative velocities. However, for the soft potential
function, the potential contribution is small and Eq. (57) is a
reasonable approximation to the entire momentum flux.

The infinite matter Ferml gas approximation will break down near
the surface of a nucleus. 1In fact, the pressure tensor is nonzero
in the surface even for nuclear matter in equilibrium, giving rise to
the surface tension. Rather than treat the full quantum mechanics of
the density matrix in the surface region, we shall adopt a macro-
scopic description, and augment the bulk momentum flux with a surface
contribution., The empirical surface temsion, o=l MeV/fm? , fixes the
integral of the pressure tensor across the surface. We shall de-
scribe the contact area of the two nuclei as a circle of radius Rp,

which reduces the dynamic equation to

>
dp

A 29 (++ LR S ~
e — - - en)+ 2%R ©
it uRn 16 poVFm [vA VB) + n(vA VB) n) 2 Rn

+ Coulomb interaction (58)

The solution of this equation requires knowledge of the evolution of
R, and of the relative velocities of the Fermi spheres. Randrup
makes the assumption that the Fermi sphere velocity is equal to the

instantaneous velocity of the nuclear centers of mass, vp p=fp g.
This results in a linear friction force. The situation is more com-
plicated in mean-field physics. The velocity of the Fermi sphere is
determined by the physical surface velocity at the points where the
particles in question changed direction. There is a time delay of
the order of the nuclear transit time before these particles reach
the contact zone. The motion of the farther nuclear surfaces is ad-
ditionally delayed with respect to the center-of-mass motion. Thus,
in mean-field physics a better description of the velocity of the
Fermi surfaces is to relate it to the center-of-mass velocity at an
earlier time,
s * _. 9
(VA VB)f » (rA rB)t-TD (59)
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with the delay time Tp having the order of magnitude

F
where R is the radius of one of the nuclei. Let us estimate this
numerically for medium heavy nuclei. Typical parameters are R~5 fm,

vp~1/4 ¢, glving

(2)(5 fm)
1/4 ¢

We next consider the evolution of the contact zone or neck region be-
tween the two nuclei. In typical TDHF collisions, the neck forms
quickly once the nuclei touch, and grows in size to a substantial
fraction of a nuclear radius. If the nuclei come apart again, due to
the Coulomb or the centrifugal forces, the neck becomes elongated and
shrinks rather slowly in size. This is 1llustrated by a TDHF calcu-
lation, shown in Fig. 5 from Ref. 12, of a collision between two Pb
nuclei. The nuclei touch when they approach within 14 fm of each
other, The neck grows to about 5.5 fm radius at the distance of
closest approach, and then shrinks at about 1/3 of the rate at which
the nuclei draw apart.

g, & (1-2) = ~ 40-80 fm/c (61)

These features were put in a completely geometric description of
the neck radius by A. Bonasera,® It is then possible to make a self-
contained model for the mean-field collisions. A comparison of the
mean-field dynamics and the macroscopic model is shown in Fig. 6,

T T T T T T 7T T T 1]

6 b— 208Pb 3 208pb ]

—d

~
[~

12 14 16 18 20 22
r (fm)

Fig. 5. Neck evolution in TDHF!2 compared with geometric model of
Ref. 6.
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with the relative velocity of the two nuclei plotted as a function of
separation. The nuclei approach with a negative velocity and are
slowed down by the Coulomb force. Between 7 and 9 fm separation, the
nuclear potential attraction becomes significant, impeding the decel-
eration. At 7 fm separation, the nuclei touch, and particle transfer
becomes important. The associated repulsive force rapidly reduces
the velocity to zero. In fact, there is an overshoot, and the nuclei
slightly rebound. For the particular collision conditions in Fig. 6,
the two nuclei remain fused. If the memory effect in the particle
momentum flux is eliminated in favor of a linear friction, the col-
lision does not show a rebound.

Observables

As mentioned earlier, mean-field theory is wvery successful in
describing the main features of low-energy collisions associated with
energy loss and momentum transfer. Let us first consider the case of
complete momentum transfer, i.e. fusion of the two nuclei. As a
function of impact parameter and initial energy, there will be a do-
main of fusion, which may be defined operationally by requiring that
the system hold together for a certain (finite) length of time. Such
a fusion region is shown in Fig. 7. There are three distinct physi-
cal processes determining the boundaries of fusion. For moderately
charged nuclei and low energies and angular momentum, the physics is
very simple. If the nuclei surmount the potential barrier of the
combined Coulomb and external nuclear potentials, they touch and the
attractive force from the surface tension in the neck holds them to-
gether, The low energy edge of the fusion domain is determined by
this potential barrier physics. At larger impact parameters and
therefore higher angular momenta, the centrifugal force is larger
than the attraction from the surface tension, and the nuclei scis-—
sion by a process of elongation and thinning out the neck. For a
fixed geometry, the balance of forces occurs at a critical angular
momentum,

1222/ pr3 = 27R 0 (62)

For the example in the figure, appropriate parameters are r~6 fm,
Rp~.5 fm, giving 2~35h. The scission boundary from TDHF actually oc=
curs at this value of the angular momentum. That angular momentum
is also close to the maximum angular momentum sustainable in a liquid
drop of nuclear matter of that size. Indeed, we see that the only
physics that is important for the scission in the mean-field treat-
ment, namely the surface tension and the inertia, is also present in
the liquid-drop model. The third boundary in Fig. 7, at small impact
parameter and high energy, is known as the fusion window. Physical-
ly, the nuclei flow through each other under these conditions, and
the attractive bulk forces are fnsufficient to hold them together in
the end, In the macroscopic description, this comes about because
of the memory effect in the particle momentum flux. This
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Fig. 6.
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Relative velocity of collision partners as a function of
separation distance. Dashed line shows a TDHF calculation,
and solid line shows the simulation by macroscopic force
dynamics.e The dot-dashed line shows the evolution when

the delay time L is set to zero.
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Fig. 7. PFusion region in collisions of 2851 + 2855, The dashed
boundary is the TDHF result,7 and the solid line is the
simulation by macroscopic force dynamics.6

contribution to the force is strongly repulsive, because of the high
velocity of the nuclei. The force persists for a significant time
after the centers of mass have been brought to rest, so the nuclei
begin to separate with a substantial velocity. The Fermi surface of
the combined spheres is then smaller than an individual sphere and
the density falls below nuclear matter density in the neck's region.
The pressure tensor becomes negative, i.e. there is an attractive
force between the two nuclei. However, there is a maximum sustain-
able negative pressure in nuclear matter, the tensile strength. When
this is exceeded, the neck will break up into regions of nuclear mat-
ter density separated by void regions. We call this mechanism neck
snap. However, the macroscopic treatment does not describe this
boundary of TDHF as well as the other boundaries. Since the nuclear
matter is under a stress extreme here, the details of the Hamiltonian
should play some role.

Recently, Davies and collaborators made a study of the fusion
window threshold with a number of Hamiltonians, and found a
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substantial dependence.8 The biggest variation was with the
Hamiltonians Skyrme II and IV, which gave thresholds of 62.5 MeV and
42.5 MeV, respectively for the window in collisions between 180
nuclei. It should be possible to understand these differences in
terms of the properties of the pressure tensor with the various in-
teractions, but so far this has not been done.

On the experimental side, the measured fusion cross sections in
medium heavy systems agree with the mean-field theory at low ener-—
gies. An example is shown in Fig. 8. The cross section increases
with energy until the scission begins at the critical angular momen—
tum. The window should cause a more dramatic decrease at higher en-
ergies, but so far this has not been observed. The fusion window may
well be nonexistent, in which case the mean-field theory would be
limited in validity to the lowest energies. An inadequacy of mean-
field theory also is found for very light systems, such as 12¢ + 120,
where there are pronounced wiggles in the fusion excitation function.
These are manifestations of resonances or other quantum effects that
are not contained in the mean-field description.

For heavy systems, the Coulomb force becomes significant in de-
termining the fusion boundary. The scission boundary moves down as
the charge increases, and at some point it extends to zero impact

1200

wl 1 :

o {mb}
——

400 [— { -

| | L |
50 100 150
Em {MeV)

Fig. 8. Experimental fusion cross section in collisions of
Oca + “OCa, compared with macroscopic force model . ® Exper-
imental data are from Refs. 9 and 8.
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arameter. We illustrate this with the macroscopic calculation for
20sn + 1205y ghown in Fig. 9. The fusion boundary has a higher
threshold than the potential barrier, which may be understood quite
simply. After the nuclei surmount the barrier, they are accelerated
toward each other by the external nuclear field. This force can be
quite strong; in the proximity model it has a maximum magnitude

~ 2™
Fproximity ZaRe (63)
As soon as the nuclei touch the repulsive particle exchange comes in-
to play. The net nuclear force at that time is the surface tension
force,

~ 21R _C
Fsurface 2 RN (64)
which we see is always less than the proximity force. Nuclei are
eager to touch each other, but less enthusiastic to remain bonded.

For the more highly charged systems, the net force will be attrac-
tive only if the neck exceeds a certain radius, requiring additional
bombarding energy above the barrier. This dynamic fusion threshold
was first described by Nix and Sierk;13 Swiatecki gives 1t the name
“"extra push". An example is the system 20984 4 54Cr, shown in Fig.
10, The experimental data show that the nuclei react with each
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Fig. 9. Fusion region in 1206441205, collisions showing the dynamic
fusion threshold.
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Fig. 10. Reaction cross section and fusion cross section for
2094 + S%r. The prediction of the macroscopic mean=-field
model is shown as solid and dashed lines respectively.

other starting at an energy of about 210 MeV, but do not begin to
fuse until 230 MeV or so. As with the fusion window, the precise
value of the dynamic fusion barrier seems to depend quite sensitively
on the nuclear Hamiltonian. Davies et al. found that in one systenm,
8%r + !3%.a, the barrier varied from 410 MeV to 660 MeV with
Hamiltonians ranging from Skyrme III to Skyrme II, respectively.8
Again, there is no understanding of how the specific characteristics
of the Hamiltonians affect the threshold.

Other aspects of low energy collisions that should be mentioned
are energy loss and angular distributions of deep inelastic scatter-
ing, which are well described by mean-field theory. The deep in-
elastic scattering is contained in the region between the barrier
curve and the scission curve. Because the neck shrinkage rate is
low, much energy is lost from the center-of-mass motion. The angular
distribution is sensitive to the temporal description of the elonga-
tion process; the fact that angular distributions are qualitatively
reproduced shows that mean-field theory has about the right time de-
pendences. However, these data also show features that are beyond
the possibility to describe in mean-field theory. Namely, there are
broad dispersions in angle and in energy, while mean—-field theory
predicts a unique angle and energy for each impact parameter. There
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are a number of ways to go beyond mean-field theory to describe
fluctuations. A recent theory of Balian and Veneroni,l* for example,
treats fluctuations associated with neighboring mean fields. More
commonly, a theoretical framework is adopted in which the Hamiltonian
is separated into a center-of-mass term, an internal term, and a
coupling that is treated in some approximate way.

BEYOND MEAN FIELD: NUCLEON-NUCLEON COLLISIONS

At higher energy, mean-field theory gives a poor description of
the single-particle density matrix because of the collisions between
particles. The central approximation of mean-field theory, Eq. (9),
must be replaced by something better. A natural way to approach
this task is to use mean-field theory as a starting point and improve
the wavefunction with perturbation theory. From a notational point
of view, the perturbation development with the full two-particle in-
teraction is cumbersome, so we will start with a simpler problem, de-
veloping the perturbations due to a one-particle external field, The
generalization to two-particle interactions is merely a question of
putting the extra particle operators into the equations.

Perturbation theory begins with a separation of the Hamiltonian
into a part which can be solved exactly, H,, and the remainder V, the
perturbation. As mentioned above, we take Hy to be the mean-field
Hamiltonian. The unperturbed states are the eigenstates of that
Hamiltonian (which change in time) and the multiparticle states built
out of those eigenstates. We shall use these states for a basis and
assume that the unperturbed density matrix is diagonal,

t
- =38 (65)
<y laiajl P = by, = 6n
Equation (65) is a key assumption in the later development, but un-

fortunately it is not readily justified. Physically, we assume that
the time scale for the evolution of the single-particle wavefunctions

is long compared to the time for the perturbations to develop.
Whether the assumption is justified in practice remains to be seen.

The actual perturbation is the two-body interaction minus the
mean field, so that the operator V only has matrix elements off-
diagonal in both particle states. For our outline of the derivation,
we take V to be an external single-particle field. The first-order
perturbed wavefunction at time t is

. -iAet”
| we» =] wWod> +-§-[z dt kL;‘ I v e e | Wo)>
—iAet_l
=] Wo + L v - St a-a | Wod (66)
k,k

\

Ae = ek:-ek
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where we have started from the mean-field wavefunction at t=0. We
next substitute the perturbed wavefunction in Eq. (4) to get a new
dynamic equation. The equation of motion for the diagonal density
matrix in the instantaneous basis of Hyp depends only on the pertur-
bation,

dni

d t 1 t o
T ~ar Ve |v =3 <l ["131"’”"»
=1 <¥a [a,,7] + [a],V]a, | (67
1 o t
'I(j-’:"u [<w|aiaj[¢> - <w|ajai|w>]

When the perturbed wavefunction (66) is inserted into (67), the
righthand side consists of terms of first, second, and third order
in V. The first-order terms may be included in the mean field and
are not of interest. The third-order terms are neglected in compari-
son to the second-order terms. These terms required the ewaluation
of operator expectation values involving four operators. A typical
expectation value 1s

t t _ »
<w(o)|aiaj aa <[ Wo)> =8 - n 8k (1 nj) (68)
After some simplification, the result for the dynamic equation is
dni - 2: 2sinlet v 2 ( (1_ ] _ (1_ )) (69)
dt Ac L A S Ay

3

The sine function of Ae is a representation of the delta function,
so in the limit where there are enough levels so that Ac takes on
values small compared to the inverse time scales of interest, we can
express the final result as

dni 2
y anz 5(Ei-€j] vij (nj(l-ni) - ni(l—nj)) (70)

This 1is recognizable as Fermi's golden rule, applied particles rather
than to the system as a whole. The only consequence of the many-
particle context, besides the mean field, is the presence of occupa-
tion factors in the formula.

The correponding formula for a perturbation due to a two-
particle interaction is
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dn
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33° (71)

- ninia[l—nj)(l—nja)]

It might also be interesting to consider perturbations of the form of
couplings between particles and vibrations. Labelling the vibration
by q, the formula describing the effect of the vibrations on the
single-particle density is

dni 2

e j}:q AV [a(ej+eq_ei)(nj-ni)[1+nq)
(72)
+ 6(€1+€q—ej)(nj—n1) nq]

To summarize the theory, the mean-field approximation is used as
a basis of the representation of the single-particle density matrix.
The off-diagonal matrix elements evolve by the mean-field
Hamiltonian, while the diagonal matrix elements evolve by Eq. (71).
It is easy to see that the theory conserves energy. The only differ-
ence from the mean—-field theory, the changing of the diagonal density
matrix elements, gives an energy change

dn
dE i
1Y % & T (73)

We substitute Eq. (71) into (73) and see that the sum vanishes, due
to the symmetry and energy conservation built into (71}. The theory
will also conserve momentum if the interaction is translationally in-
variant.

The theory embodied in Eq. (71) has not yet been calculated to a
point that allows a judgement about its adequacy. One attempt at a
calculation was made by Wong and Davies,15 who apply mean-fiﬁ]éd
theory and Eq. (71) to collisions of 165 on 190 and “%a on *Yca.
Unfortunately, these authors used as a basis the time-evolved eigen-
states of the initial mean-field Hamiltonian, rather than the instan-

taneous eigenstates of Hyp.

In that basis, there are very few levels crossings, and the
energy-conserving delta function prevents practically all collisions
from occurring. The reason why that happens may be seen in a momen-
tum space representation. The occupied and unoccupied states are
concentrated at momenta below and above the Fermi momentum, respec—
tively, with equal probability for positive and negative momenta due
to the parity symmetry of the initial state. We have seen that in
the mean-field collision dynamics the momenta of the particles do not
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change very much. So in the collisional geometry of the Fermi sur-
face with two intersecting spheres, the unoccupied states will remain
at a higher energy than the occupied states,

_Another approach to introduce collisional dynamics is the theory
of Norenberg, et al.'® Here the basis of states is the set of in-
stantaneous eigenstates of Hyp, as required by (71). However, the
initial occupation numbers of these states are not taken from the
time-dependent mean-field wavefunction, but are assumed to be 0 or I,
depending on the occupation probability in the initial state. It is
also assumed that the level crossings are distinct, occurring one at
a time. Then the transitions can be calculated by the Landau-Zener
formula [HW],

v2
P = exp[=-2T 1—:7——7——7— (74)
€ =€ —€

b O e
In constrast, the perturbation theory limit becomes valid when many
level crossings take place over the range of time required for an in-
dividual transition. Sketching the energy of a single-particle level
as a function of time or of some collective coordinate, the two
limits are shown in Fig. 1l1.

The number of level crossings in a heavy ion collision can be
estimated with a Fermli gas model. The state of maximum compression
is approximated by the intersecting sphere momentum distribution. In
the diabatic picture, the energy of single-particle states change
smoothly during the collision process, so that an unoccupled state
must cross all unoccupied states having lower energy. In this way,
we can examine a particular momentum state in the intersecting Fermi
sphere, and compute how many unoccupied states were crossed. If each
nucleus starts with a momentum p per particle in the center-of-mass
frame, then a particle at the tip of the Fermi surface crosses a num-
ber of single-particle states given by

N = (2np/pF) % + &pz) (75)
\\
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Fig. 11, Sketch of single-particle level crossing for situations in
which Landau~Zener formula would be valid, and for which
perturbation theory would be valid.
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In this equation we count only spatial states of a given kind of
nuicleon; if both spin orientations are counted, the number should be

doubled. The energy change of the particle during the diabatic
transformation is

.h2
8~ pp, + ) (76)
so the energy spacing of the crossings is
p 2
BE/N % —— 2w 50/A Mev (77
m TA

This should be compared with a typical matrix element of the two-
particle interaction. The most important matrix elements are of the
pairing type, involving particle degenerate energy states. These may
be estimated using a zero-range interaction having a strength consis-—
tent with the mean-field potentlal., Calling the strength of the in-
teraction vy, the volume of the system 1f; the estimate is

v ve Ule)
T Stpre” F3 ~_L_O -l 20 - i sé
AT v 83 e | 1D T e e l (78)

This energy 1s smaller than the energy spacing in Eq. (76), so the
approximation of separated crossings is reasonable at low energies.
At higher energies the phase space increases more rapidly, and the
perturbation limit 1s more appropriate.

The Uehling-Uhlenbeck Equation

Equation (71) can be reduced to classical physics in the7treat-
ment of large systems with slowly varying potential fields. In
that case the eigenstates of Hyp are well approximated by wavepackets
localized in both momentum and position. The occupation number of
the states is then just the phase space occupation probability given
by the Wigner function
a, ~ f(p,r) (79)
To make the formula completely classical, we also use Born approxi-
mation for the particle-particle scattering cross section,

P 2dP 2 ] (80)
do 2m 3 3 §{e +e_~-e_~¢
a‘ﬁ"'\}"f (21:)3<"1"2|V|"3p4> ere,esmy

with v the relative velocity of the particles. Then the dynamic
equation is
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(2m)3 &(3) (p,+p,~P,~P) (81)

where the total derivative D/Dt represents the entire lefthand side
of Eq. (24). This form was first proposed by Uehling and
Uhlenbeck.!? It is the Boltzmann equation with the collision inte-
gral modified by the Pauli blocking factors (l-f). This equation is
attractive for consideration in the theory of intermediate energy
collisions, because it encompasses both the mean-field physics valid
at low energies, and the independent collision dynamics applicable

at high energies.

The numerical solution of the Uehling-Uhlenbeck equation is dif-
ficult, but 1is undoubtedly within reach of present-day computational
techniques. I shall describe one method for solving the equation
that has been pursued by the Michigan State University group. 18 The
method is based on the Particle-in-Cell technique of numerical hydro-
dynamics.19 The system is described by a set of test particles, each
having specified momentum and position., The density of these parti-
cles in phase space represents the distribution function f{p,r). If
the particles obeyed Newtonian mechanics within the mean field, the
distribution function would evolve according to the Vlasov equation.
The Newtonian equations are integrated with the particle positions
calculated at discrete time steps, t+At, t+24t, etc. The particle
positions are updated by the equation

;i(At) - r*i(o> + p,(8t/2)At/m (82)

where p(4t/2) is the momentum of the particle at the midpoint of the
time interval.* To find the momentum vectors at the half time steps,

we use the equation
p,(86/2) = B (~bt/2) + F ()bt (83)

where Fy(o) is the force at t = 0. The force is calculated by divid-
ing space up into cells., The density in each cell is determined by
counting the number of test particles n in that cell,

o(r) =—2— (84)

*The algorithm is an order of At more accurate using the momentum at
the midpoint rather than at the initial time.
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where N is the number of test particles used to represent one physi~
cal particle. The potential field of the cell is specified by some
function of the density, and the force is determined from the differ—
ence in potentials in adjacent cells,

F (r) = 0(0(,3,k0)-0(o(141,5,5) )
X Ax ’

etc., (85)

vhere the point r lies between the midpoints of cells (i,3,k) and
(i41,3,k).

The collision integral in Eq. (81) 1s calculated by simulating
nucleon-nucleon collisions between the test particles. Each test
particle is permitted to interact with 1/N of the other test partic-
les in a way that produces the required scattering cross section for
isolated nucleons. The Pauli blocking factors are included by accep-~
ting or rejecting each collision in a probabalistic way. We examine
the final state of each collision, constructing a sphere about the
phase space coordinate of each particle. The phase space density f
is determined by counting the number of test particles in that
sphere. The collision is accepted with a probability (l-fp) (l—fp‘),
using a2 random number generator to make the probabalistic decision.

The numerical parameters that enter the calculation are the cell
size, the number of test particles to represent one physical parti-
cle, and the time step., We have not yet made a systematic study of
the parameter requirements to achieve a definite accuracy, but have
only done some exploratory calculations. In Ref. 18 we used cells of
2 fm on a side, which seems adequate for short time intervals, but
becomes faulty after times of the order of 100 fm/c: the nuclei do
not remain spherical but acquire the square shape of the cells. This
situation is rectified by using cells 1 fm on a side, which allows
propagation of nuclei to at least 120 fm/c. The number of test par-
ticles to represent a physical particle should be large to reduce
numerical fluctuations. We found that a nucleus could be described
reasonably well with about 10 test particles per occupied cell. Then
the numerical fluctuations in the density are of the order of 30%,
which seems tolerable in the calculation of the forces. Thus with
cells 1 fm on a side, the number of test particles is 50 times the
number of mucleons. The requirements on the time step are that the
particle travel only a small fraction of cell length and that the
collision probability be small during one step. In practice,
t=0.5 fm/c seems adequate, and we have used that value. In ogr
present studies, we assume an isotropic cross section of 4 fm“,

An important test of the numerical scheme is to study the be-
havior of a nucleus by itself, Besides maintaining its overall shape
and density, it should not leak particles, and the momentum distri-
bution should be a sharp-edged Fermi distribution. With the above
numerical parameters, we find that less than one nucleon leaks out of
an 190 nucleus in a time 120 fm/c, which should be satsifactory to
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Fig. 12. Collisions of 12¢ + 12¢ at 84 MeV/n, calculated by J.
Aichelin.2! The lefthand column shows the positions of
the test particles, evolved according to the Vlasov
equation with the soft potential function, Eq. (52). In
the righthand column, the collision integral is included
in the evolution equation. The numerical parameters in
these calculations are At=0.5 fm/c, cell size Ax=1 fm,
and N=100 test particles/nucleon.



NONRELATIVISTIC THEORY OF HEAVY ION COLLISIONS 309

treat large cross section phenomena for energies down to 25 MeV/n.
one check on the effectiveness of the Pauli blocking algorithm is to
record the fraction of collisions that are blocked in a nuclear
ground state. We find that for %0, 90% of the collisions between
particles are blocked.

We next examine collisions between nuclei. Figure 12 shows the
projection of test particles on the x,z plane for collisions of 12¢
on ‘% at 84 MeV/n. The first set of figures shows the theory with-
out collisions, 1.e. the Vlasov equation. In that theory, the nuclei
go through each other, as they do in TDHF. The prediction of the U-U
equation is shown in the second column. The nucleon—-nucleon collis-
ions are extremely important, converting the directed motion into a
spherically expanding distribution. There is some suggestion20 that
thermal equilibrium may come about very rapidly in collisions at in-
termediate energy; the study here gives very rough qualitative sup-
port to that view.

One observable quantity that can be studied rather easily is the
single-particle distribution in the final state. 1In the laboratory
frame, the energy distribution of the emitted particles 1s quite flat
for forward angles, changing to a distribution that falls off steeply
with energy at backward angles. This behavior is qualitatively re-
produced by the numerical calculations with the Uehling-Uhlenbeck
equation, 21 However, it 1is not completely straightforward to make a
quantitative comparison, because the theory provides only a single-
particle distribution function, and experiments measure free parti-
cles separately from clusters such as alphas which are emitted copi-
ously at the lower energies. Kruse et al. have also studied the
single-particle distri.but::l.on,22 using a somewhat different technique
for particle acceleration in the Uehling-Uhlenbeck equation. They
make a clustering correction to the single-particle distribution to
obtain the free proton spectrum. They find qualitative agreement be-
tween theory and experiment, shown in Fig. 13, with some differences
between the theory with and without the mean-field term.

The inclusive single-particle momentum distribution averages
over impact parameter and orientation of the collision, losing possi-
ble dependences on these parameters. It is possible to regain some
of this information with a global analysis of momentum flow. In this
technique, the momentum of a large number of particles are measured
simultaneously, and the quadrupole tensor of the distribution is de-
termined. One popular definition of this quantity is

P (1)P (1)
= 1
WS om,

F

where 1 labels the different particles emerging from the collision.
The tensor tends to be close to isotropic for collisions between
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Fig. 13. Proton sgectrum from collisions of Ar + Ca at 137 MeV/n.
The data?® are indicated by points, and the t.heory22 by
histograms.

equal mass target and projectile, but off-diagonal anisotropies are
predicted to occur at finite impact parameter in models for which the
pressure has other sources besides nucleon-nucleon collisions. Al-
though the anisotropy is rather small, it has a large effect on the
orientation of the principal axes of the tensor F,y. The orientation
of the longest principal axis, called the flow angle, is thus quite
sensitive to the underlying dKnamics. Flow angles were recently
measured 2% for collisions of *%Ca + *%Ca and %°Nb + 93Nb at energies
of 400 MeV/n. 1In the lighter system, the distribution of flow angles
peaked at zero degrees, showing that the anisotropy was small com-
pared to the difference F,,~Fyy. However, for the heavier system,
the most central collisions, defined by the highest multiplicity of
secondaries, showed a peaking at a flow angle of 30°. This result 1s
reproduced in the theory based on the Uehling-Uhlenbeck equation. In
Fig. 14 is shown the predicted distribution of flow angles for the
soft and stiff potential functions.?® We see that there 1s some
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sensitivity to the potential function, with the stiff potential pro-—
ducing more anisotropy. We thus have some hope of extracting the
high-density dynamics of heavy-ion collisions from this type of
measurement, It is interesting that the sensitivity seems to be
greatest at a beam energy of 400 MeV/n; at 200 and 800 MeV/n the flov
angle moves to forward direction.

Finally, I would like to conclude with a suggestion that the
Uehling-Uhlenbeck equation be applied to the calculation of linear
momentum transfer. The data show divisions between regions of nearlj
complete momentum transfer between target and projectile, and regions
where half of the momentum is transferred. At the higher energies
where the experiments are done, the mean-field contribution to the
longitudinal momentum transfer is small., It will be interesting to
see the effect of the nucleon-nucleon collisions in a well-defined
theory of the heavy-ion reaction.
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