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These lectures present the theory of the nuclear response in the Random 

Phase Approximation (RP A). In the first lecture, various relations are derived 

between densities and currents which give rise to the well-known sum rules. 

Then RPA is derived via the time-dependent Hartree theory. The various 

formulations of RP A are shown: the configuration space representation, the 

coordinate space representation, the Landau theory of infinite systems and 

the RPA for separable interactions constrained by consistency. The remarkable 

success of RP A in describing the collective density oscillations of closed shell 

nuclei is illustrated with a few examples. In the final lecture, the 11-c response 

is discussed with the application of simple theoretical considerations to the 

empirical data. Finally, we point out several problems which remain in the 

response theory. 

§ l. Introduction 

These lectures will present the theory of the nuclear response function, 

aimed toward students learning the techniques for calculating the vibrational 

properties of nuclei. The response function measures how the one-body ob­

servables for the nucleus change in the presence of external fields. We define 

the response function in terms of the external field V and the one-body operator 

0 to be measured as 

R(Y, O, (J)) = _ :L:(<OfOfi)<iiVfO) + <OfOfi)<ifVfO)). (1) 
• E,-(J) E,+ (J) 

Here we label the eigenstates of the nucleus by i, with energies E1• The 

energy transferred by the external field is w. In principle, R (w) contains 

all the information one needs about the vibrational energies and the transition 

strengths. The theory which has proven to be the most useful for calcula­

tional purposes is RPA. *> This has many formulations, which are more or 

less convenient depending on the application. In the general theory of the 

response, sum rules play an important role, because they provide a firm point 

of knowledge about the response function. In the first lecture I will discuss 

*> The name Random Phase Approximation (RP A) was coined by Pines and Bohm.'> 

 at Pennsylvania State U
niversity on M

arch 5, 2016
http://ptps.oxfordjournals.org/

D
ow

nloaded from
 

http://ptps.oxfordjournals.org/


116 G. F. Bertsch 

the single particle operators whose matrix elements are the object of the theory 

and the sum rules they obey. In the second lecture, I will derive the RPA 

response from the point of view of time-dependent Hartree-Fock theory, and 

make the connection with other formulations of RPA. In the final lecture, I 

will show some of the simplifications that have been applied to extract the 

gross features of the response by analytic methods. Several of the lecturers 

and participants in this summer school have made important contributions in 

this regard. I will concentrate on the role of velocity dependent interactions, 

since this has not been much emphasized in previous lecture senes. Otherwise, 

much of this lecture material may also be found in my Gull Lake lecture 

notes.21 

§ 2. Operators and sum rules 

The most important operators we deal with are the density and current. 

There are four kinds of these operators, depending on their spin and isospin 

character. For the moment I will concentrate on the ordinary density, which 

may be expressed in terms of particle creation and annihilation operators as 

(2) 

m a position space representation, or as 

(3) 

m a shell model representation, where IC, A label complete sets of shell model 

orbits. The first representation will be useful for deriving commutator rela­

tions and sum rules. For detailed numerical calculations, the shell model re­

presentation is indispensable. These matrix elements may be derived using 

the helicity formalism, as discussed in Ref. 2) or Ref. 3) . 
We will abbreviate the off-diagonal density matrix elements that enter 

Eq. (1) by ap, 

(4) 

This is a transition density. There are two simple models for the transition 

density that are useful for comparison purposes and simplified calculations. 

The first is the deformed model of Bohr and Mottelson, in which it is imagined 

that the surface moves a slight amount without changing the intrinsic density. 

The transition density is then related to the derivative of the ground state 

density with some proportionality constant. The conventional definition for 

a transition from a spherical ground state to an excited state of angular 

momentum L, M is 
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The Nuclear Response Function 117 

where Po is the ground state density. The parameter d 1s the deformation 

length, and is the product of the Bohr-Mottelson {3 and the nuclear radius 

R. Such properties as the electromagnetic transition strength can be related 

to the {3-moment between the states as follows: 

B(ELt) = ( s rLYL(LiiJIO)d8r r 
= ({3R)2 ( frL+2dPodr)2 = ({3R)2 (L+2)2( frL+lpodr)2 

2L+1 dr 2L+1 

~ 9 ({3R) 2 R2L -2 __£____ 
2L+ 1 (47t) 2 ' 

(6) 

where in the last step a uniform charge density was assumed. 

Another macroscopic model, proposed by Tassie,<> has a superior functional 

form for the transition density. The model is 

(7) 

3 dpo L 0 
rv Po+ r d r ' = • (8) 

We will see in detail later how this model can be justified by sum rules and 

the assumption that the smoothest motions remain most coherent. It turns 

out that the Tassie model is remarkably accurate in describing the radial 

form of the transition densities associated with the strongest states. 

The spin- and isospin-densities are also important observables, the matrix 

elements of the operators 

(9) 

p,(r) = :E (t.lrlt.')at, • .,,,a,., • .,t,', 
t 8 ,s1 ,t1/ 

(10) 

(11) 

Since u has three components, there will be in general three distinct matrix 

elements of 6. It is convenient to specify these either by coupling with an 

orbital angular momentum to a total J, or by the spin helicity. 

We also consider the current operator, 

(12) 

This can be expressed m terms of the coordinate space creation operators as 

the following limit, 
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118 G. F. Bertsch 

a~-r/2ar+r/2- a~+rl2ar-r/2 
2ilxl 

(13) 

There is a relation between density and current which must be satisfied in any 

reasonable theory, which is the quantum version of the equation of continuity. 

This is derived by evaluating the commutator of the Hamiltonian Hand the 

density p (r). If the interaction is a function of the local densities p (r), 
Pu(r), etc., as is the case for interactions based on meson exchange, then the 

interaction in H commutes with {5 (r). We need only consider the kinetic 

energy in the Hamiltonian, 

T = :E lim s a~a,.+r- 2a~a,. + a~+ ... a,. dar . 
ryz r-o 2mx 

(14) 

We now use the coordinate Fock space representations of {5 (r) and j (r), 
Eqs. (2) and (13), and the commutation relations 

a,.ta,..= -a,..a,.t+1J,.,,.. 

to evaluate [H, {5] = [T, {5]. The result is 

[H,p(r)] = iV·j(r) 
m 

(15) 

(16) 

We see this relation as the equation of continuity by taking its expectation 

value in a time-varying wave function, 

(¢1 [H, P] 1¢)= -i.!(p(r))= -ip at 

=i f-<¢1il¢> =i r ·<i> iP·vP, 
m m 

i.e., p +V·vp=O. 

(17) 

(18) 

Since Eq. (16) is an operator relation, all its matrix elements must obey 

the relation, and we can write down relations between transition densities 

and transition currents, 

(Et-Eo)(ilf5(r) IO) = iP·(ilj(r) IO). (19) 
m 

The left-hand side is obviously closely related to experiment, but what about 

the current? We can get a further relation by taking the commutator of (16) 

with an arbitrary external potential field, 

[V, [H,p(r)]]= +iP·[V,j(r)], (20) 
m 
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The Nuclear Response Function 119 

where 

The right-hand side is evaluated using the commutator relation, 

[j (r)' p (r')] = p ~r) r ,.() (r- r') . (21) 
z 

We now take the expectation value of both sides of (20) in a state i, and 

write out explicitly the sum over intermediate states on the left-hand side. 

"'E,(E,-Ei)<fiP(r) Ji)<iJV/f)= _ _!_f.<iJp(r) /i)VV(r). (22) 
1 2m 

This is the sum rule first utilized by Fallieros5> and Noble6> (see also Ref. 

6a)). If the potential field V should happen to connect only a single eigen­

state, then there 1s only one term in the sum and it can be solved for 

<fiP (r) /i), 

(23) 

We can now "derive" the Tassie model by demanding that (23) be satisfied 

for the smoothest potential fields. These fields are the harmonic polynomials 

for L=/=0, 

(24) 

For L = 0, the simplest field, a constant, gives no transitions and we take the 

next smoothest, 

V(r) =r for L=O. (25) 

It is easy to see in physical terms what the sum rule is telling us. Let us 

imagine a projectile passing quickly by a nucleus, so that its potential field 

acts for only a very short time, 

V(r, t) = V(r)()(t). 

A nucleon at pos1t10n r will receive an impulse, changing its momentum by 

.dp=PV. The nucleon started with zero velocity expectation value so its final 

velocity is 

rv 
v=-. (26) 

m 

This is the velocity field created by the projectile. The equation of continuity, 
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120 G. F. Bertsch 

(18), relates this to the rate of change of density at t = 0+. Now if the 

field V happens to excite only a single normal mode, the time varying density 

has to have the same r-dependence at all times!u This gives the Tassie model. 

Of course, the assumption of coherence of a .single normal mode is a very 

strong one, and it is not obvious that it should be a reasonable approximation 

in the many-body system. 

The conventional energy-weighted sum rule is derived by multiplying 

(22) by V(r) and integrating over r. The result is 

(27) 

This sum rule also has a nice physical interpretation. Again we consider 

a fast-moving projectile with its perturbative field V(r) 8(t). The energy trans­

ferred to a nucleon at some position r is (ilp) 2/2m, so the right-hand side of 

(27) is the total energy transferred to the nucleus. When the quantum 

mechanics of a sudden perturbation is calculated, one finds that the probability 

of exciting a state f is given by <iiVI0)2/h2• Thus the left-hand side also 

measures the average energy absorbed by the nucleus. This is independent 

of the dynamics because the energy is absorbed before the nucleus is much 

disturbed from equilibrium. 

When the specific field rLYL are inserted in (27), the right-hand side can 

be evaluated in terms of the expectation value of a power of r. This is 
Lane's sum rule,n 

(28) 

This sum rule is a valuable tool for both experimenters and theoreticians. 

When results for transition strengths are quoted as a fraction of the sum 

rule, there is no ambiguity as to the definition of the quoted matrix elements. 

Another useful sum rule, derived by Satchler,8l is based on a mixed use 

of the macroscopic model and Lane's sum rule. We earlier evaluated the 

matrix element of rLYL in the macroscopic model, assuming a uniform matter 

distribution, 

(29) 

We now use the uniform model to evaluate <r•L-2) on the right-hand side 

of (28), 

<r•L-2> . = 3 R•L-2 
un1form 2L + 1 • (30) 

Inserting the above into (29), we obtain Satchler's sum rule, 
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The Nuclear Response Function 121 

(31) 

This sum rule is not exact, but it has proved very convenient for discussing 

transition strengths associated with nuclear projectiles. This is because it is 

very easy to extract from experimental data a value for the deformation length 

associated with the strong inelastic transitions. 

I will now illustrate Eqs. (28) and (31) with a typical application. The 

giant quadrupole vibration is located at 63/A113 MeV; it is at 10.8MeV in 
208Pb. If it were the only state with quadrupole transition strength, it would 

exhaust the sum rule and we calculate the transition strength as*> 

<GQJr•Y2J0)2= A'13 (2) (5)<r2)11! 
8nm (63 MeV) 

(208) 413 (10) (3/5) (1.2fm) 2 (208) 213 (197 .3Me V-fm) 2 

8n (938Me V) (63Me V) 

=0.98 X 10'fm' for 208Pb . 

Similarly, the deformation length is computed as 

j 2n·10 
({3R) aQ:::::. 3A 2f3m63Me V ~0.63fm for 

(32) 

(33) 

Since ({3R) is small compared to the nuclear radius, we conclude that heavy 

nuclei are quite stiff with respect to these vibrations. The fact that ({3R) is 

of the same size as the surface thickness means that strongly absorbed projec­

tiles will excite the giant quadrupole with a high probability if they pass by 

the nucleus at an appropriate impact parameter. There are of course lower 

frequency vibrations which also have deformation lengths of the order of 

1 fm. These low-frequency vibrations contribute only 10'"'-'15% of the energy 

weighted sum rule, and so can be neglected for the estimates (32) and (33). 

There is another important energy-weighted sum rule in the theory of iso­

scalar vibrations, involving the gradient operator. The gradient commutes 

with a translationally invariant Hamiltonian, so the right-hand side is zero. 

The only way this condition can be met on the left-hand side is for all of the 

strength of the operator to be concentrated at zero energy. This is of course 

the spurious state. We shall see that it is helpful in dealing with low-lying 

collective states to have this translation invariance built into the theory. 

Energy-weighted sum rules for spin excitations and isovector excitations 

are necessarily more complicated, because the interaction does not commute 

with the corresponding densities. Stated differently, the mesons carry spin 

*> I have left h out of all the equations, but it must be put back in the numerical formulas 
to express results in the usual units of MeV and fm. 
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122 G. F. Bertsch 

and isospin, and must therefore be considered explicitly when discussing spin­

and isospin-densities. They do not carry baryon number, and so their effect can 

be ignored on the isoscalar densities. There is however a non-energy-weighted 

sum rule, due to Gaarde,9> which has proven to be very useful in the discus­

sion of the (p, n) reaction. This starts with the operator identity*> 

(34) 

We evaluate the expectation value in the nuclear ground state, putting an inter­

mediate set of states between the two operators on the left-hand side. This 

yields 

The operators on the second line are the Gamow-Teller beta decay operators, 

and the sum rule relates the total strengths for {3- and {3+ transitions to 

the neutron excess. This sum rule provides a useful lower bound on the 

{3- strength in nuclei with neutron excesses, because the {3+ strength is in­

significant in comparison. 

§ 3. RPA 

There are many ways to formulate RPA and to derive the equations of 

motion. The RPA is the small amplitude limit of the time-dependent Hartree­

Fock theory, and I will derive the equations by this method. 3a> This formu­

lation is particularly useful for deriving simple formulas for the giant vibra­

tional frequencies. I will also make the equivalence of this formulation with 

the particle-hole representation in configuration space, and with the Landau 

kinetic equation for an infinite medium. Finally, I will derive the response 

function for RPA. This last formulation is the most efficient for treating 

simplified interactions. 

We begin with the time-dependent Hartree-Fock equations, 

a [ P2 J i-rp,(t) = --+ v [p] ¢,(t). ot 2m 
(36) 

Here the ¢i (t) are single-particle wave functions which depend on r and t. 
I write the potential as a functional of p to suggest that V can be nonlocal, 

depending on the full density matrix. We start with an equilibrium solution 

*J This identity is a nonrelativistic limit of the current algebra relation [A/, A/] =ijj1.V! 
of high energy physics."> 
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The Nuclear Response Function 123 

¢/0> ( t) having time dependence 

(37) 

The RPA is the small amplitude limit of vibrations about this equilibrium. 

Let us perturb the system with an external potential A Vext (r) e-iwt, where A 
is a small parameter. The perturbed wave function is expressed to first order 

in A as 

(38) 

Given these wave functions with ¢.<o> real, we may compute the density and 

current to first order in A as 

with 

with 

<cfJI 151 cfJ> =Po+ AtJp + 0 (A2) 

A 

(Jp = 2 :2: ¢,<0> Re ¢/ (t) , 
i 

tJ j = _!_ :2: (f ¢£<OJ Im¢/ - (f Im ¢/) ¢£ <ol) . 
2 i 

(39) 

(40) 

The time varying potential in principle depends on the full density matrix, 

but we assume that we need only consider the dependence on p'"> (R+ (r/2), 

R- (r/2)) up to the quadratic terms in r. (This is exact for Skyrme Hamil­

tonians). Then the potential may be expanded as 

V[p] = V (Po) +A[ tJV tJp + V~tJr + V ~tJpr + 1; (V1tJj·P +P · V 1tJj) + Vext] 
(Jp 2t 

+0(A2)fV~f, (41) 

where r is the kinetic energy operator and tJr is its transition density. we 

now insert (38) and (41) into (36) and extract the coefficient of A, 

i! ¢/ (t) +e.¢/ (t) = [ +r(- 2~ + v~ )r + V(Po) ]<~>>' (t) 

+ [ tJV (Jp + _l___ (V 1tJj ·f + P · V 1tJj) + V~(Jr + V ~tJpr + Vext]¢/0> • ( 42) 
(Jp 2t 

Next we separate ¢/ into its real and imaginary parts. Equation (42) then 

gives two equations, 
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124 G. F. Bertsch 

+ [ ~: op + Vropr2+ Vro-r+ Vext }fi/0l, (43) 

J_Re ¢/ (t) = [Ho- e,]Im ¢/ (t) + V 1 oj .r¢/0), (44) at 
where 

If (44) is multiplied by ¢/0>, the left-hand side 1s just the time derivative of 

the density of particle i. Let us sum over i, and Eq. ( 44) gives 

If V is purely local, the V 1 and Vr terms are absent and the right-hand side 
can be simplified 

1 ~ 
=--P·oj. 

m 
(46) 

Thus the equation of continuity follows directly from the TDHF equations. 

The RPA conserves current and will obey the energy weighted sum rules 
discussed in the first lecture. This key fact makes RP A the most useful 
theory for vibrations. 

With nonlocal interactions, the baryon current is still conserved. The 

additional terms in Eq. (44) have the relationship Vr= Vi> and will cancel 
so that (46) remains true. Of course, for spin- and isospin-currents, there need 
not be any such relation and these currents are not conserved in general. 

3. 1. Impulsive excitation and the spurious state 

I now want to make the physics of RP A more concrete and describe the 
situation where the vibration has been excited by a potential field V (r) o (t). 
Then at t=O+, there is a velocity field but no change in density, 

(47) 
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The Nuclear Response Function 125 

If the vibration has a frequency w, these functions will vary m time as 

Im ¢/ (t) =cos wt Im ¢/, Re ¢/ (t) =sin wt Re ¢/, (48) 

where the symbol ¢/ without a time label denotes a time-independent function 

of position. We substitute (48) into (43) and (44), and for simplicity 

neglect the nonlocality in V. Then the RPA equations become 

(49) 

(50) 

The fact that there must be a spurious state at zero frequency is seen 

m this representation by considering the excitation to be a uniform force field, 

which results in a pure translation, 

(51) 

Equation (50) Is automatically satisfied for w = 0, while ( 49) is satisfied if 

(52) 

The first term is manipulated to obtain 

which cancels the second term in (52) because 

tJp=2 .E ¢/0) Re ¢/ =2 .E ¢/0)a·P¢t<o) =a·PPo. 
i i 

Later on, we shall invoke this consistency requirement between tJVjtJp, PV 

and Pp0, to define simplified interactions. 

3. 2. Configuration space representations 

Starting with (49) and (50), it is a simple matter to write down the 

RPA equations in the. familiar matrix representation. We add and subtract 

the two equations, and integrate the resulting equations with an arbitrary 

Hartree-Fock wave function ¢£(0). The amplitudes are expressed as 

; S ¢/0l (Re ¢/ +Im ¢/)dar= X", 

; S ¢ /Ol (Re ¢/ - Im ¢/)dar= Y tJ • 

In terms of these amplitudes Eqs. (49) and (50) become 

(54) 
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(55) 

where ViJ,i'J' is the matrix element of tJVjtJp. For nonlocal potentials this 

is given by 

The normalization of the X and Y amplitudes can be determined by requiring 

that the energy associated with the vibration equals /1.(1). This gives the usual 

condition 

(57) 

As expressed in (55), the RPA is solved by diagonalizing a matrix. The 

matrix is not symmetric, so the usual Householder matrix diagonalization 

method cannot be applied directly. However, the matrix can be formulated 

as a product of two symmetric matrices, for which standard techniques can 

be applied. II) The matrix form, Eq. (55), gives the only practical method 

of solution if the full nonlocality of the potential, as expressed in (56), is 

important for the physics. The continuum must be treated by a discrete set 

of states, and then the number of configurations required to give an adequate 

approximation to the true solution is of the order of 20 for excitations in 
160 to 1000 for excitations in 208Pb. 

3. 3. Landau theory 

The RPA assumes a simple form in infinite systems, when only long 

wavelength excitations are considered. Then the orbits are labelled by 

momentum k, and the excitation can be characterized by a momentum q. 
We now go back to (36), and instead of considering real and imaginary parts 

of ¢/ (t), we divide it into positive and negative frequency components. 

(58) 

The equation of motion for the coefficients x and y are 

(59) 

(60) 

where nk w> = () (kp- k), and we have included a possible momentum dependence 

in the central potential with an effective mass m* in the single-particle energy. 

 at Pennsylvania State U
niversity on M

arch 5, 2016
http://ptps.oxfordjournals.org/

D
ow

nloaded from
 

http://ptps.oxfordjournals.org/


The Nuclear Response Function 127 

We now use a trick to write the equations in a form that only involves the 
amplitudes in the vicinity of the Fermi surface. In (60), change the variable 
from k to k + q, and subtract the equation from (59), 

Thus (x~c+ Yk+q) is only non vanishing in the region about the Fermi surface 
where n"<o>_nl,0~q=f=O. A differential equation equivalent to (61) can be made 
by the replacements 

a 
(j)~-

i8t' 
k·q v·V 
--~--* . , m z 

(n"COl- n~o~q) ~q ·V kncol, 

av fu 
L:;--(x~c,+Y~c,) =&V~-.-. 
"' &p"' zq 

(62) 

Then (61) becomes the linearized Vlasov equation 

(63) 

For the Landau Fermi liquid equation, we write m (62) 

nk(Q) -n~0~q=q cos ()kq& (k-kF), (xk + Yk+q) =&nk (nk(O)- nnq). (64) 

Then the sharply peaked function (n"w> -n~0~q) factors out of (61) and we 
are left with 

(65) 

where g, ( = 4 in nuclear matter) is the spin-isospin-degeneracy of the system. 
Landau next defines a multipole expansion of the interaction, 

(66) 

to get the final equation for &n~c 

We see that we only need to know the interaction in the vicinity of the 
Fermi surface, and then only the diagonal interaction as a function of relative 
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momentum. This is valid only if the momentum q is much smaller than any 

other length scale in the application. 

Numerical values for the Landau parameters in nuclear matter have been 

calculated by Sjoberg, et al., 12l,la> based on the Brueckner theory and a real­

istic nucleon-nucleon interaction. These are given in Table I. 

Table I. Nuclear matter Landau parameters, from Refs. 12) and 13). 

L 

0 
1 

2 

The spin-dependent parameters are defined by the expansion, 
q L=FL+ GLa,-a,+FL'~,-~,+ GL'a,-a,~,-~,. 

The numbers in the table were calculated from Eq. (66) assuming 

k, · (2n)'v, 153MeV-fm'. v,= m' I.e., 4nk,'g, 

FL GL 

-0.48 .45 

-0.90 . 76 

-0.33 

.77 

.59 
1. 29 

.07 

3. 4. Green's functions and the density response 

To find the vibration induced by an external field in RPA, we must 

solve coupled inhomogeneous differential equations based on the homogeneous 

equations ( 49) and (50). The standard technique for deafing with such 

situations utilizes Green's functions. To solve the one-particle problem 

we define the. inverse operator 

(68) 

The brute force way to construct this operator 1s to find the eigenstates 

¢/0> and eigenvalues e1 of H 0 , and then the Green's function 1s 

,/. (0) ( ) ,/. (0) ( I) 
g(r, r', et+ w) =I:; '~'J r '~'J r . 

i e1 -e,-w 
(69) 

The cleverer way is to use the solutions of (H0 - Et- w) ¢ = 0 that satisfy 

each boundary condition, 

g (r, r', e, + w) = __ --.:...¢_--'--(r--"<"--) ¢'--+_("-r"">)'-----

(¢+ d ¢--¢- d ¢+) 
2mdr 2mdr R 

(70) 

To solve RPA with the Green's function, we substitute (49) into (50) and 

solve for Re ¢/, 
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The Nuclear Response Function 129 

The operator 1s simplified using 

(72) 

The equation for Re ¢/ is then 

Since the equation involves tJ(J on the right-hand side, let us make an equation 

with (Jp on the left by multiplying (73) by ¢/0> and summing over i. The 

result can be expressed compactly in terms of the free density response func­

tion, 

Then (73) becomes 

(75) 

With another operator inversion we finally arrive at 

(76) 

We only need the free density response C 0 in (76) because I assumed that 

tJVjtJp depends only on the local density p (r). The theory can be generaliz­

ed to dependence on j (r), cr (r), etc. which requires then additional Green's 

functions. It does not seem feasible to generalize to an arbitrary dependence 

on the full density matrix p (r, r'), for then C 0 would be a function of four 

coordinate variables. 

There are several ways CRPA can be used. Its poles identify the eigen­

modes, according to the representation 

(77) 

The probability of exciting the system by an external field 1s given by 

s ((J)) = LXO!Vextli)2t3 (Et- (J)) = _!_ sd8rd8r'Vext (r) Im C(r, r') Vext (r'). 
t n 

(78) 

Here C is given an imaginary part either by adding a small ir; to the energy, 

or, in the case of continuum states, using outgoing wave boundary conditions 

in the definition of ¢+ in (70). 
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To actually solve (76), we first make a spherical harmonic decomposition 

of the dependence on r. Then G 0 is expanded 

(79) 

where 

Expanding iJV(r) j(Jp (r') in the same way, the angle-decomposed Green's 

function is 

(80) 

This still looks a formal equation, but it can be easily implemented representing 

the operators by matrices in some suitable vector space of functions. For 

large enough systems, (80) is found to be superior to the configuration 

representation. This is because the dimensionality depends on how finely the 

interaction must be described by the matrix representations, and not on the 

number of configurations, which grows very quickly with the size of the 

system. My collaborators and I have used a representation by a discrete 

mesh in coordinate space.w.15J The unit operator is of course the unit matrix, 

and GL0 (r, r') is computed at each pair of mesh points. This works quite 

well with rather coarse meshes. As the practitioners of time-dependent 

Hartree-Fock theory have discovered, it is possible to get good accuracy with 

mesh sizes up to 1 fm spacing. 

Another representation, used by Knupfer and Huber/6> is a discrete mesh 

in momentum space. In principle it should not make any real difference which 

one of these is used. However, it is easier to visualize the physics m position 

space and the self-consistency of the potential is easier to control m position 

space. 

3. 5. Separable interactions and self-consistency 

The solution of Eq. (80) becomes trivial if the interaction ()Vj(Jp can 

be approximated by a separable function 

vL (r, r') = tcf(r)f(r'). (81) 

This is equivalent to making (80) a one-dimensional matrix problem. To 

obtain the solution, we make use of the following formula for the inverse 

of a dyadic operator, 

(82) 

This may be verified by a power series expansion. Substituting (81) in (80) 
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we find 

iJ{h (r) = S G L 0 (r, r') Yext (r') dr' 

tc S GL0 (r, r')f(r')dr' S f(r")GL0 (r", r')Vext(r')dr'dr" 

1 + tc S dr' dr" f(r') G Lo (r', r") f(r") 

It ts then only necessary to solve the algebraic equation 

131 

(83) 

(84) 

to find the poles of GRPA. The physics problem is now in deciding an optimum 

form for f(r), and the best value for IC in the approximate interaction, Eq. 

(81). It is here that self-consistency provides a powerful constraint, and leads 

to Bohr and Mottelson's treatment of vibrations. !5l We first note that if the 

transition density (Jp has the Tassie or macroscopic form, 

(Jp~d d{Jo , 
dr 

(85) 

then consistency demands that iJV be related to the static potential in the same 

way, 

&v~adVo. 
dr 

(86) 

This can be achieved with the separable interaction (81) if we choose f = dV0/ dr 
and IC so that 

dVo I dVo I 
( ') _ dr r dr r' 

v r, r - s dV d . 
r 2dr--0 ~ 

dr dr 

(87) 

The theory with the interaction (87) used in (84) is mathematically equivalent 

to the collective coordinate theory of Bohr and Mottelson.18> 

3. 6. Some results of microscopic calculations 

I will now show a couple examples of experimental transttton densities, 

and the comparison with theory. One of the strongest transitions observed 

in spherical nuclei is the o+ ~3- octupole transition in 208Pb, at excitation energy 

2.74 MeV. The transition density measured in electron scattering is shown 

in Fig. 1, from Ref. 17). Notice first of all the strong surface peaking of 

the experimental transition density. The theory curves are the RPA calcula­

tions of Gogny,19) Bertsch and Tsai,w Ring and Speth,20> and Hamamoto.21) 
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100.------------..., 
.., 
Q 
>< 8.0 

-exp. 

-·-·a~ -b 
······c theory 
----- d 

4 6 

Radius (f) 

Fig. 1. Transition charge density 
for "'Pb(g.s.~3-), as measured 
by electron scattering, Ref. 17). 
The thin lines are predictions 
of various RP A models. 

The calculations of Refs. 14) and 19) are fully self-consistent in that the same 

Hamiltonian is used to describe the ground state as the excited state. Hama­

moto's calculation2D is based on the separable form of the interaction described 

in § 3. 5. Despite the seeming coarseness of this approximation, the results 

are surprisingly accurate. 

Figure 2 shows the transition density of the 2+ state in 84Zn. Again 

there is strong surface peaking. The theory curve is a modified RPA which 

allows partial occupancies of the different single-particle orbits.22> In both 

examples, we see that RPA gives the correct surface transition density. How­

ever, there is an interesting systematic discrepancy in the interior: RPA usually 

64Zn 2j (0.992) 

2 3 4 5 6 7 B 9 r (fm) 

Fig. 2. Transition charge density for 64Zn(g.s.~2•), measured by 
electron scattering. The line is the prediction of an RPA 
calculation. ZZ> 
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predicts more structure than is observed experimentally. The oscillations 

associated with the single-particle levels near the Fermi surface are suppressed 

in the experimental transition density. This is also true of the static densities, 

and remains a problem to be solved. 

3. 7. Coherent state limit 

If we assume that the motion initiated by some potential field V remains 

coherent, i.e., is an eigenstate of the system, then the RPA can be reduced 

to simple integral formulas. This assumption was made in Eqs. (47) "'(50). 

The imaginary part of the time-varying wave function is given in Eq. ( 47), 

and the real part may be found from Eq. (50), 

(88) 

where 

fv u=--. (89) 
mw 

If we go back to the representation with a time-varying wave function ¢, (r, t), 
we find that (88) represents a displacement of the wave function by a distance 

u. The (P · u) term is the change in amplitude due to the stretching or 

squeezing of the wave function under a (nonuniform) displacement. Substi­

tuting (88) into (49), we find an equation to be satisfied by the field V, 

(90) 

If we multiply this by Re ¢,, sum over i and integrate over r, the equation 

assumes a very nice form,"8l 

(91) 

where the numerator is an integral over the ground state depending on u. 
This has the form of Rayleigh's variational principle, with the numerator 

representing a potential energy functional of the displacement field*> u, and the 

denominator the usual inertia. Equation (91) together with (89) is in fact 

a variational principle, giving an upper bound on the frequency of the lowest 

excitation. A differential equation for u can be derived in the usual way 

from such a variational principle. We will not discuss this any further except 

*l In the theory of Holzwarth and collaborators,Z'l u is treated as a variational field instead 
of V, which allows more kinds of vibration to be considered. However, it appears that 
this assumption is not justified from the microscopic RP A."'l 
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to mention that the differential equation is that of vibrations in an elastic 

medium rather than in a fluid. In the case that V does not excite a single 

eigenstate, Eq. (91) still has meaning as the average frequency associated 

with V, obtained by dividing the al-weighted strength by the a>-weighted 
strength.26l.m 

w 2= <il [[H, V], H], [H, V] li) = L; (Et-Eo) 8<fiVI0)2 ( 92) 
u <il [[H, V], V] li) :E CEt-Eo) <fiVI0)2 

The giant quadrupole vibration is described by a field u=Pr"Y2• Apply­

ing (88) with such a field, we find that a short-range potential in the Hamil­

tonian gives no contribution to I, for the same reason that (52) is satisfied. 

Thus the restoring force in the giant quadrupole is the single-particle kinetic 

energy. The actual formula for the quadrupole frequency is found to be 

w 2 _ 2<T> (93) 
Q- m<r2) ' 

where <T> is the average single-particle kinetic energy. In the harmonic 

oscillator model, this gives the famous result"8' 

The expected coefficient of 4, for noninteracting particles in an oscillator well, 

is cut in half by throwing away the potential energy associated with the 

quadrupole distortion. The formula (93) is however in no way based on the 

oscillator model; substitution of Fermi gas parameters in (93) gives an equally 

good account of the empirical giant quadrupole state. 

If the potential is momentum-dependent, its effects do not cancel out 

completely. Because of current conservation, the denominator of (93) remains 

the same. The numerator, however, is modified with (T -PVl) replacing 

(T). 
The nonlocality of Brueckner theory gives an increase in (94) by "-'30%, 

which makes the theory disagree with experiment. A possible resolution of 

this was pointed out by Kohno and Ando,"9' who considered contributions to 

nonlocality of higher order in the expansion of the density matrix p (R+ (r/2), 
R- (r/2)) in powers of r. 

§ 4. Isospin- and spin-excitations 

4. 1. The giant dipole vibration 

In the Goldhaber-Teller model, the giant dipole state is the coherent 

state excited by the potential field V (r) = zr.. The displaced field u is then 

a uniform displacement of protons against neutrons. The energy of the state, 

as given by the integral formula (91), is80' 
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(95) 

The momentum-dependent factor can be couched in Landau language, identi­

fying 2m V" as F 1/3 and 2mp V/ as F 1' /3, 

(1 +F/ /3) (1)2 

(1+F1/3) ' 
(96) 

where (J) is the frequency in the absence of momentum dependence. From 

the signs of these parameters in Table I, it may be seen that both terms 

increase the energy of the state. The increase associated with F 1 is due to 

the larger single-particle energy splittings in the momentum-dependent potential, 

while the increase associated with Fr' is a residual interaction effect. From 

(95) it may easily be seen that (J)bT varies with A as A - 118 • This is not 

found to be the case empirically for heavy nuclei; the empirical giant dipole 

in heavy nuclei has a displacement field which is somewhat reduced in the 

surface region. A corresponding formula to Eq. (96) for that case has been 

given by And5.80 

4. 2. The Gamow-Teller vibration 

Recently, there has been much progress in measuring the strength func­

tion for the Gamow-Teller operator 6r _, using the (p, n) reaction at proton 

energies around 200 Me V.82> Figure 3 shows some experimental data,88> with 

the prominent peak being the giant Gamow-Teller vibration. We have calcu­

lated the Gamow-Teller response in RPA using as a residual interaction the 

(p,n) 

Ep=200 MeV 
119 Tm 8=0° 

0~~~~~~---L-T=r~~~.-~ 
140 160 180 200 140 160 180 200 

En (MeV) 

Fig- 3. The strength function for the (p, n) reaction, measured at o• 
with incident proton energy of 200 MeV."> The prominent peak is 
the giant Gamow-Teller vibration. Note that it is absent from "Ca, 
an N=Z nucleus. 
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direct part of a ~-function potential,34> 

(97) 

We found that the empirical data on the entire range of nuclei in Fig. 3 could 
be described with a value for the parameter v~r=220 MeV-fm3• This is 
certainly consistent with other sources of information about v ~ross> such as the 
Landau parameter G 0'. From Table I, 

The Gamow-Teller state is not as strongly collective as the vibrations 
we discussed earlier, because most of the nucleons are spin-paired in the 
ground state. Consequently, much of the apparatus of RPA is unnecessary. 

In fact quite adequate estimates of the energy of the Gamow-Teller state can 
be obtained from the expectation value of H, 

E= <OIOt[H, 0]10) 
<OIOtOIO) 

(98) 

The Hamiltonian is divided into an orbital energy part, a one-body spin-orbit 

part, and a residual interaction. Then these terms contribute separately to 
the energy, 

E = Earbital + Espin-orbit + V • (99) 

The Gamow-Teller operator has no spatial dependence and the orbital energy 
is therefore zero. The residual interaction (97) can be expressed 

The evaluation of V can be simplified even further by relating to the matrix 
element of (Jr _, 

s ~P~t<(r)d8r=<GTI6cl0), 

s (~P"~ (r) ) 2d 8r= <~Per~) <GTI6cl0) 

=<P)<GTI6cl0)2 • 

A 
(101) 

Here <P) is the average density weighted by the radial distribution of the 

transition density. The <P> is roughly independent of nucleus and is of the 
order 
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(p)=0.12 fm- 8 • 

The transition strength (GT[O'c[0)2 can be estimated from the sum rule limit 
Eq. (35) 

(GT[O'r_[O)Z=2(N-Z). (103) 

We conclude that the residual interaction contributes to the energy of the 
Gamow-Teller state according to 

- 2(N -Z) 
V =IC~< , 

A 
(104) 

where "~r = V~r(P)= (220 Me V-fm8) (0.12 fm- 8) =25 MeV. Equation (104) gives 
an estimate of 6 MeV in 90Zr. 

The contribution of the spin-orbit potential to the mean energy is also 
easy to compute. In the valence shells with the highest l, the nucleons travel 
with the Fermi momentum along the surface, and therefore have an A-inde­
pendent spin-orbit splitting, 

(105) 

In a typical situation in heavy nuclei, the parent nucleus has the j> shell 
filled, and the daughter has both spin-orbit partners empty. The operator O'c 
excites the configurations (j>Pj>"'- 1) and (j<Pj>n- 1) with roughly equal strength, 
so the expectation value of the spin-orbit potential 1s 

(106) 

Thus the total excitation in 90Zr is about 9 MeV, as 1s m fact measured. 
The approximations (99) and (104) were applied by Suzuki86> to the 

study of the energy splitting between the isobaric analog state (excited by 

the operator r -) and the Gamow-Teller state. The lAS energy has no spin 
orbit contribution, and its potential has a coefficient !Cr which is slightly larger 

than "~ro The result is 

(107) 

For nuclei with small neutron excesses, the (Es.o.) GT is larger and the GT 
state lies above the lAS. In the heaviest nuclei, such as 208Pb, the second 
term balances the first and the Gamow-Teller state is at the same energy as 
the lAS. This was of course hypothesized by Fujita, et al.,8n in very early 

theoretical work on the GT. 
A global study of the Gamow-Teller strength function was made by 

Klapdor, et al.,88> who used a separable interaction of a form similar to 
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Eqs. (103) and (104), 

<iF 1Ivlkl-1) =tca"<iF1 IO"r -IO)<kl- 1 IO"r -10). (108) 

The shell structure, of course, plays some role in the detailed distribution 

of the strength function. It is possible to see some of these details with 

our analytic estimates. The major factor disturbing the Gamow-Teller vibra­

tion is the competition with the spin-orbit potential, which favors j-coupling, 

as opposed to the residual interaction of the Gamow-Teller vibration, which 

favors L-S coupling. When the Hamiltonian matrix for the configurations 

(j>Pj>n-l), (j<Pj>n- 1) is diagonalized, the residual interaction by itself gives 

the upper state a predominant L = 0 S = 1 character, and the lower state a 

predominant L = 1 S = 1 character, with an energy splitting of ,..__,6 MeV. The 

spin-orbit potential mixes these states, with a matrix element of the order of 

(109) 

The mixing probability P of the L-S coupled states in perturbation theory Is 

then given by 

(110) 

Thus the lower state should have about one-quarter of the Gamow-Teller 

strength. This is indeed observed, at least for the lighter nuclei.s<l 

4. 3. Momentum-dependence of the r- and O"r-interactions 

In the last section we saw that the Gamow-Teller energetics determined 

the strength of a momentum-independent interaction, equivalent to Go' in the 

Landau language. We now ask whether anything can be learned about non­

locality of the interaction, i.e., G/. We saw in the case of the r operator, 

the giant dipole state was sensitive to momentum-dependent parts of the inter­

action, because the operator has a spatial variation. We could make the same 

kind of analysis of the v< interaction that we made for the Van fitting the energy 

of the isobaric analog state to determine v<. We would then expect not to 

reproduce the giant dipole with this interaction, because it lacks momentum 

dependence. I tried this out with a calculation of the !" excitation in 208Pb. 

The v< was fit to the energy of the analog state, and gives results shown in 

Table II. Note that the required interaction strength depends on the single 

particle Hamiltonian; a Hamiltonian with m* / m<1 requires less residual 

interaction than does a local Hamiltonian. These interactions and single-particle 

Hamiltonians are then used to calculate the giant dipole state in RPA, with 

results shown on the fourth line of Table II. In both cases the predicted 

energy is too low. This indicates the need for a repulsive momentum-dependent 
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m* 
m 
Vr 

Analog State energy 

Dipole State energy 
L=1 r_ 

m* 
m 

V(fr 

Gamow-Teller energy 
L=1 rJr_ 

The Nucaler Response Function 

Table II. Models for the r excitations. 

Single-Particle Hamiltonian 

Skyrme I Skyrme II 

1 0.76 

305MeV-fm' 248MeV-fm8 

(r _) 15.2MeV 15.2MeV 
(zr.) 11.6MeV 12.7MeV 

22 MeV 23. 7MeV 

Table III. Models for the rJr _ excitations. 

Single-Particle Hamiltonian 

Skyrme I Skyrme II 

1 0.76 

220MeV-fm' 170MeV-fm' 
(rJr_) 15.6MeV 15.6MeV 

20~21 MeV 21 MeV 

139 

Exp 

15.2MeV 

13.5MeV 
24. 7 MeV (Ref. 39)) 

Exp 

15. 6 MeV (Ref. 40)) 

21. 5 MeV (Ref. 40)) 

interaction in the -r-channel, as for example the F 1' of Table I. From Eq. 
(96) we see that the influence of the theoretical F 1' would be to raise the 
dipole energy by ""'10%. Parenthetically, we note that the repulsive momen­
tum-dependence brings the RP A theory closer to TDA, since the ground 
state correlation matrix elements are reduced. 

We now go back to the fJ-r operator, and ask whether some momentum­
dependence can be deduced from the comparison of L = 0 and L = 1 energies. 
As before, we fit the Vur to the L = 0 energy, and then compare the L = 1 
prediction with experiment. The results of this exercise are shown in Table 
III. We see that the empirical Vur fits the L = 1 strength quite well. Thus 
there is no empirical need for a G/ interaction. This accords well with the 
theory of Table I, which has small G 1'. 

§ 5. Conclusion 

I have presented some ideas and techniques of response function theory 
that have proved very useful in the last decade. As a conclusion, it might 
be helpful to list what I consider as some of the main open problems. 
A. Beyond RP A The effective mass m* / m at the Fermi surface is one 
or larger, due to correlations. We need a simple theory for dealing with 
these correlations to go beyond the RPA. Some requirements to impose on 
the simple theory are that it reproduces empirical single-particle energies, and 
that it respects the conservation laws. 

 at Pennsylvania State U
niversity on M

arch 5, 2016
http://ptps.oxfordjournals.org/

D
ow

nloaded from
 

http://ptps.oxfordjournals.org/


140 G. F. Bertsch 

B. Missing strength There is disagreement between electron scattering 

results and hadron scattering results on the amount of strength in the giant 

quadrupole, with electron scattering claiming less than 50%. We need to go 

beyond RPA to predict how much strength is lost to the main peaks, and 

where that missing strength is located. 

C. Suppression of interior density fluctuations We saw in Figs. 1 and 2 

that the RPA predicts measurable transition densities deep in the nuclear 

interior, while experiment shows interior transition densities to be strongly 

suppressed. In fact, the same thing happens with the ground state density 

distribution: Theory predicts interior fluctuations due to specific shell fillings, 

but these are not seen experimentally. The correlations between particles 

would tend to smooth out these fluctuations. But no one to my knowledge 

has presented a plausible case that the correlations should be strong enough 

to cause the degree of suppression seen experimentally. 
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