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I.INTRODUCTTON

There are remarkable parallels between atomic clusters and atomic nuclei, and I want to

explore some aspects having to do with giant resonances. For electronic properties of clusters, and

particularly alkali metal clusters, the common ground is mean-f,eld theory. In nuclei, mean-fleld

theory gives a the shell model and the fundamental expansion to make theories of spectroscopy.

But mean-field theory is also widely used in chemistry and condensed matter physics, and it
provides a robust approximation in its domain of validity, Particularly successful for ground state

properties is the density-functional theory [1], which treats the electron-electron interaction in a

local-density approximation (LDA), i.e. by adding a density-dependent contact term to the Hartree

Hamiltonian. The theory is commonly used to calculate ground state structures of molecules and

condensed syslems. A corresponding theory for excitations is the time-dependent local-density

approximation (TDLDA), which my focus here.
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A. Why TDLDA?

Various formal justifications can be given for theory based on the TDLDA. The equation of

motion is nothing more than the time-dependent Schroedinger equation in a self-consistent mean

field, a time-dependent version of the Kohn-Sham equation. It can be derived from the stationary

principle

t I atwtu - a9tvt :0.J '' dt"
in the same way that the static mean-field equations are derived by minimizing the energy,

d(YlHlY) : 0. Here Y : .4ll;/; is restricted to be a Slater determinant of single-electron

wave functions {;. The formal existence proofs of Density Functional Theory can be generalized

to the time-dependent problem [3].

My own optimism for the method is based on more pragmatic considerations. Provided the

space of wave functions /1 is not artificially truncated, the TDLDA automatically satisfles sum

rules such as the TRK sum rule. Thus it will give the correct integral of a strength {unction. On

the other hand, one can argue on grounds of adiabaticity.that a theory that describes ground states

should be valid also for low-frequency excitations. With these two limits respected by the theory,

the theory should be a reasonable approximation to the behavior in between. This argument relies

on using the same energy functional for the dynamics as was used to construct the static electronic

wave function. This generalized self-consistency-using the same Hamiltonian for the dynamics

as for the statics-has been a powerful principle in nuclear physics for describing the collective

excitations including the giant resonances.

But one should also keep in mind that some properties are not expected to be well described

in the TDLDA. And any property that depends on intrinsic two-body operators would be doubtful,

because the basic approximation is a truncation to the one-particle density. We consider all

properties that can be expressed with products of one-body operators to be fair game for TDLDA,

including nonlinear effects of strong fields.

A number of researchers, particularly in chemistry and in condensed matter physics have taken

up the TDLDA theory. The flrst application of TDLDA to atoms was the work of Zangwill and
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Soven in 1980 t4l, who calculated the photoionization cross sectionl of noble gas atoms in the

energy range 15-35 eV. Since then, the nonlinear response of atoms has be examined in TDLDA

[6]. Improved treatments of the Coulomb field in TDLDA for noble gas atoms were given in a

phenomenological way in ref. [7] and with an extended functional in ref. [8]. It is interesting to note

that Kohn and collaborators recently advocated using the real-time technique for the calculation of

the van der Waals interaction between atoms [9].

The flrst application of TDLDA to molecules was a study of N2 and C2H2 by Levine and Soven

[10]. Extensive RPA calculations for larger systems have been carried out by the Scandinavian

groups of H. J .A. Jensen and H. Agren the atomic orbital representation Ul,l2l. The TDLDA

has also been applied by two North American quantum chemistry groups to study the excitations

of small molecules [1,t-16].

On the other extreme in size is bulk matter, and here the method has been applied to semi-

conductors, insulators, and simple metals. The agreement is good in diamond and Si (107o) and

somewhatworseitGe(25Vo),withthetheoryalwaysgivingtoomuchscreening[17]. TheTDLDA

plasmon dispersion was calculated for alkali metals in ref. [18]. The theory does well for Al and

Na, but becomes increasing poor for heavier alkalis, failing to reproduce the anomalous dispersion

in Cs. The dielectric function of TDLDA has also been used in the construction of sophisticated

theories of the single-electron Green's function [19].

The TDLDA applications to clusters include many publications in which schematic treatments

of the atoms, such as the jellium model, were emliloyed. Calculations with realistic atomic

Hamiltonians have been started only recently. Besides our own work, described below, a Spanish

group has started calculations on alkali clusters [20] using the Berkeley computer codes that were

written for condensed matter. Our own method has been taken up by the European groups of

Reinhard and Suraud [21], who so far have applied the method to sodium clusters. The first

lTheir numerical algorithm, using a Green's firnction in a radial coordinate mesh, was in fact identical to

one used earlier in nuclear physics to treat RPA in the continuum [5].
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calculation of the C6s absorption spectrum with a realistic Hamiltonian was by Broglia,s group,

using the matrix RPA representation [22].

There are of course much more accurate theories that have a corresponding penalty in com-

putational effort required. In quantum chemistry, the configuration interaction (CI) approach is

systematic and has reached very high accuracy for small molecules, but the scaling of computa-

tional effort with size is very poor. Other thoeries include the so-called GIV approximation of
condensed matter physics as well as the many-body perturbation formalism that is often applied in
atomic physics. However, the GW approximation apparently has not led to a better theory of the

dielectric response; ref. [24] states,

"The GW eigenvalues would lead to an apparent overcorrection of the dielectric

function from too large (in LDA) to too small." .

On the other hand, the many-body perturbation theory has been very successful in the atomic

problem [25]. With an accurately calculated nonlocal 2l43l,the theory gives transition strengths

in IB atoms that agree well with experimentn better than TDLDA 1421.

B. Numerical method

There are many ways to implement the TDLDA equations. Our numerical calculations use

the algorithm developed for nuclear theory by Flocard, et al. l2l. Rather than transforming to a

frequency representation as is commonly done, one solves TDLDA equations in real time. We

have found this technique to be competitive with many techniques in current use, and it gives us the

tool to make systematic surveys. The algorithm uses a three-dimensional coordinate space mesh to

represent the electron wave functions. This has the advantage that the Hamiltonian matrix is sparse

if one uses a difference formula to respresent the kinetic energy operator 126,2j1. One trick to
achieve good accuracy in a coarse mesh is to use a higher-order difference formulal2,26l. As a first

stage in a calculation, the static mean-field equations are solved iteratively to generate a stationary

wave function. Then the wave function is perturbed by an external field,, $t - eia\)d, and the

subsequent evolution in time is computed with rhe operator, d(t) : expf-i yt H{t)dt]$,, wnere
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II(t) is the Kohn-Sham Hamiltonian evaluated with the instantaneous density. The numerical

algorithm for the evolution operator same as in rcf . l2l. It is very stable, provided the time

step is smaller than the largest eigenvalue of the Hamiltonian. Physical quantities a.re extracted

from expectation of observables Q/ as'a function of time. This can be expressed formally as the

correlator, 0 (t) (lQt (t), a (0)l) I i.

In the real-time implementation of the TDLDA, the computing effort scales with the number of
particles 1{ and the number of mesh points D as ND - Iy'2. Methods using either a particle-hole

representation or the response formalism scale as a higher power, at least if one applies the methods

naively without truncation of matrix diagonalization or inversion operations.

As mentioned above, we are not interested in exploring a large set of energy functionals, and

we have settled on one that has been widely applied for structure calculations. This uses the local

density exchange-correlation functional of Perdew and Zunger [28] . The ionic pseudopotentials are

constructed with the prescription of [29], treating nonlocality effects with the method of Kleinman

and Bylander [30]. An obvious improvement for systems with unpaired spins is the local spin-

density approximation. There are promising new energy.functionals, particularly the so-called

Generalized Gradient Approximation (GGA) exchange-correlation energy 131,32).

C. A sampler of results

So far we have completed studies on the optical absorption spectra of.alkali metal clusters

and various carbon structures, including carbon clusters, C6e, and conjugated carbon molecules.

Briefly, our main physics results are:

1) Extension by an order of magnitude of the masses that can be calculated with realistic Hamilto-

nians; we reported Na and Li up ro I{ = 140 (ref. [33]).

2) Demonstration that the theory works well for large Li clusters. We confirmed results of less

realistic models [34-36) that attributed the large red shift of the surface plasmon to the effective

mass enhancement caused by the pseudopotential. The theory also reproduces the rather broad,

asymmetric shape of the plasmon peak, thus showing that the width in this system is due to what is
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FIG. 1. Optical absorption of Li{^, clusters, from ref. [33]

;alled Landau damping in the many-body community and interband transitions in the condensed

nattercommunity. SeeFig. 1.

3) In sodium clusters, we conflrmed the early jellium studies that predicted the surface plasmon

r frequency that was too high by lOVo. There is a recent report that the TDLDA agrees with the

rxperiment [20], but it is now believed that the method used there, a supercell technique, was not

'ully converged due to dipole-dipole interactions between clusters in different cells [37].

l) First calculation of the optical spectra in carbon structures extending from the optical to the

y'UV region, and including the o-o* together with the zr-2.* manifolds of states [38,39].

i) Good agreement between theory and experiment for the optical absorption spectrum in benzene

391. See Fig. 2.

i) One of very few realistic calculations of the C6s optical absorption 133,22,391This is a chal-

enge because the screening from the o-o* manifold must be taken into account to reproduce the

rbserved strengths in the nominally r -r* transitions. The integrated strength is shown in Fig. 3

br the region of the zr-zr* transitions, and it can be seen that it agrees rather well with experiment.

{oweveq the TDLDA predicts 4 sharp transitions whereas experiment shows broader peaks and
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FIG. 2. Optical absorption of the benzene molecule, in units of eV-I. a) experimental, from ref. [40];

b) TDLDA; t391.
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FIG. 3. Integrated strength below 6.2 eV in C6e, TDLDA, dashed line [39]; experiment [41], solid line.
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not as many of them.

7) Demonstration that the strong, low-frequency mode in carbon chains behaves very much like

the classical free-elecffon oscillations in a cylinder [38]. Here we found that detailed TDLDA

calculations could be fit by an an analytic model based on strongly collective behavior in the

n-n* manifold of excitatiofls, u.r2 - logll]l L. The theoretical resonance frequencies also agreed

with experiment to within l0Vo,for the carbon clusters that form linear chains.

8) For atoms in the IB group, we have shown that TDLDA atomic strength function calculated

with the Troullier-Martins pseudopotential is nearly identical to the one calculated with all the

electrons included explicitly in the range 0-50 eV [42]. This is important for the applicability of

pseudopotentials to clusters of IB atoms. Doubts had been raised because the nonlocality of the

pseudopotential strongly affects the TRK sum rule.

D. Work in progress

In this section, I report on work that is underway, but not yet completed. It is possible that

some of it will be posted as preprints on the Los Alamos preprint server, xxx.lan1.gov, within this

year.

l. Chiroptical properties by TDLDA

The above-reported calculations used only the dipole operator ,, computing the correlator

([r(r), D(0)]). Another one-body operator of physical interest is the magnetic moment operator

M : &,ilZ*; the interference with the electric dipole gives rise to the chiroptical behavior of

non-oriented molecules, Thus we can calculate these properties (circular dichroism and optical

rotatorypower)fromthecorrelationfunction ([M(t),D(0)]).Becauseitisanexpectationof one-

body operators, we believe the mean-field approximation will be useful. Optical rotatory power

and circular dichroism are the dispersive and absorptive parts of the same analytic function, and

traditional methods have been inadequate for calculating the dispersive part; the only calculation

in the literature of the optical rotatory power using a realistic Hamiltonian is for an exotic system
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that has not even been measured t481. Our numerical method has the advantage that there is no

bias in the representation of the wave function. It automatically satisfies sum rules and produces

gauge-invariant observables. In fact, the sum rule can be read out of the time-dependent response at

short times. This overcomes the difficulties that more tailored bases have, that sum rules and gauge

invariance may not be satisfied. We are presently calbulating the molecule methyloxirane, a l0-

atom molecule with known optical rotatory power in the visible and measured circular dichroism

for several states in the ultraviolet [49]. For bulk systems (quartz and selenium), the TDLDA has

been successful in describing the optical rotatory power [50]. In that work, it was found that the

inclusion ofthe exchange-conelation part ofthe energy functional has a very large effect on the

result.

2. TDLDA response of group IB elements

There are no realistic calculations of the optical response of clusters of Cu, Ag, or Au, despite

the technical interest in these elemental clusters. The reason is the proximity of the d-electrons to

the valence s-orbital; the d is high polarizable and strongly renormalizes the strength function. As

mentioned earlier, we initially had doubts that pseudopotentials could be applied to these elements,

but this was resolved satisfactorily [42]. We are therefore going ahead with calculations of small

Ag and Au clusters. Numerically, the d-electrons require a fine mesh which taxes the computer

resources, but clusters up to I[ : 10 are feasible. Our results will probably conflrm the more

schematic jellium models that predict a screening of the strong s-manifold transitions by a factor

of several.

3. Ionization of Na clusters in strong fields

This project, in collaboration with an Orsay group, is stimulated by the Freiburg measurement

of the competition between ionization and evaporation of Na clusters in strong fields [51]. The

experiment showed that ionization of Na!|, clusters becomes probable when the laser intensity is
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high enough to deposit 6-8 photons within a time of the order of 100 fs. The ionization potential

is such that two photons are required to photoionize.

Our present investigation is rather schematic, because the theory of the behavior of clusters in

strong fields is still not well developed, and it appears to us that models that can be easily calculated

are still instructive. We are treating the electrons in a jellium model, evaluating the second-order

field perturbation. However, the field contains beside the extemal photon an internal contribution

from the surface plasmons that are excited. Since the electron interactions are all through the f,eld,

the model is in fact a simplified time-dependent mean-field theory, but in the nonlinear domain. It
appears that the surface plasmons are very important for enhancing the ionization rate, not only by

providing an intermediate step in the absorptive cross section, but also by dispersive field effects.

IT. WHERE DO WE GO FROMHERE?

Clearly the TDLDA is a powerful theoretical tool, and we still don,t know its limits of applicia-

bility. In this section we list some promising directions for the next couple of years. The common

theme is to explore possible new applications of the the theory.

A. Nonlinear dynamics

We believe that TDLDA is a promising theory to-describe the nonlinear response of clusters

to external fields, including strong fields. The single-electron dynamics is treated fully quantum

mechanically, and the many-body physics is accounted for to the leading order. The weak nonlin-

earity, characteizedby hyperpolarizabilities coefficients, has been successfully treated in the basic

TDLDA approximation in both atoms [6] and clusters as large as C6e [54,55]. Also interesting is

the ionization process. The TDLDA has already been applied to stron-field ionization in atoms

[56] and small sodium clusters [57]. It is generally found that clusters are much easier to ionize

than free atoms. Our schematic treatment of Na clusters verified this behavior and we would now

like to apply the full TDLDA theory to sodium clusters large enough to compare with experiment
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[51 ]. An interesting question is whether the induced fi6lds control the physics, or whether the ionic
potentials are also important.

B. Finite temperature

The TDLDA is a theory for the electronic response of a system with frozen ionic coordinates.

The main new ingredient at finite temperature is that the initial state is not a single structure,

but an ensemble of geometries. The response is jusr an ensemble average of the responses of
individual structures. This neglects quantum effects in the ionic motion, but should be a reasonable

approximation in many circumstances. Clearly, such problems can be treated only if there is an

efficient method to generate the ensemble of states; the number of states one can contemplate

including, for clusters of a f'ew tens of atoms, is a hundred or so. A few cases that that would be

interesting to study are:

i) Mie resonance in alkali metal clusters. The experiments of Haberland t5g,59l on temperature

dependence of the dipole strength function in sodium clusters shows peaks that have typical widths
(FWHM) of 0.1 eV at very low temperatures, broadening to 0.5 eV temperatures above room

temperature. There is already a phenomenological description of the broadening based on a

random matrix Hamiltonian [60].

2) Coo. Part of the width of the UV lines is the intrinsic vibrational coupling, and part is due to

the thermal excitation of C60. Spectra have been measured at g00K and cold in solution. and some

broadening is seen.

3) Opacity of dense plasrna. This is beyond the scope of this proposat, but should be mentioned in
the catalog of possible TDLDA applications. Currently, the state of the art in calculating the optical

absorption in dense plasmas is to use static mean fiekl theory with an LDA energy functional, or
a CI expansion [61]. The low-frequency oscillator strength is of course strongly affected by the

interaction, and the TDLDA extension would be very natural. The opacity of rare gas clusters at

densities around I gm/cm3 and temperature around l0 eV is very relevant to the phenornenon of
sonoluminescence, according to the theory of Moss et al. [62].
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C. Electron-vibration coupling

The electron-vibration coupling is important for many physical processes: the infrared oscillator

strength, resistivity and superconductivity in bulk systems, and the damping of oscillator strength

in larger molecules. In early studies we investigated this coupling using simplified tight-binding

models of the electron wave function, but a calculation of the infrared strength in Coo showed that

such models are quite unreliable t661. In contrast, the LDA seems to work up to a factor of two

or better. In an older study using a different algorithm [67], we investigated the coupling of the

collective dipole mode in Na clusters to vibrations' While TDLDA worked well for Na2, we were

not successful in Na3. The algorithm was not fast enough to treat all of the vibration couplings,

and the mode that we did treat had only a fraction of the needed strength. We would like to revisit

this question with our much faster algorithm. We are interested only in the width of the absorption

strength, so the vibrational degrees of freedom can be treated semiclassically. A goal farther down

the road is to understand the widths of the strong transitions in C66 in the ultraviolet. There are

approximately four peaks, each with a width of about 0.3 eV (FWHM). Also in C66: the absorption

in the green, due to vibronic coupling to forbidden transitions, has yet to be explained frorn nb

initio theory. Since these are weak transitions, it is less clear that the TDLDA will have a useful

accuracy (factor of two or better).

D. Better energy functionals

Our view up to now is to lake a well-documented LDA functional and investigate the full range

of predictions. However, it is clear that when one considers systems with unpaired electrons, the

generalization to a functional of local spin density is very natural. With another collaborator,

Susumu Saito, Yabana and I plan to investigate systems where the spin might be significant One

possibility is small aluminum clusters. Aiz is known to have a triplet ground state; its optical

absorption cross section might be sensitive to the treatment of spin in the energy functional.

Recently a gradient-corrected energy functional has been found, the so-called GGA, that

significantly improves the agreement for ground state energies [3 l] as well as excitation energies
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in simple molecules [16]. If its success continues, we will eventually want to use it in the TDLDA

calculations. However, at present the continuation of the systematic survey with the simpler

[unctional has higher priority.

The pseudopotential prescription we use is susceptible to the appearance of ghost states for

certain choices of the angular momentum channels to be treated nonlocally. Recently, Goedecker

and collaborators [63] have proposed ghost-free pseudopotentials (based on Gaussians) that are

smoother than previous ones. With a smoother potential. it may be possible to use a coarser mesh,

which would be very helpful for the computational efTect.

E. Algorithmic improvements

Our representation for the wave function, a three-dimensio;ral spatial lattice, requires large

vectors and very intensive computing, typically using supercomputers or the latest generation of
work stations. Small improvements in the lattice representation could have large beneflts because

the vector size varies as the cube of the one-dimensional mesh. We would like to investigate

nonuniform meshes, with closer spacing in regions where the electron kinetic energy is high. We

believe that approaches subdividing initially uniform meshes may be promising; another approach

uses a coordinate transformation to shrink and expand the mesh in different regions [64].

Another area of possible algorithmic improvement is to use the Hamiltonian operator in a

different way. In the real-time method, the basic calculation is of the operator e-i ! H dt acting on

the initial wave function. This typically requires 104 applications of 11 to a vector to approximate

the wanted operator multiplication. There might be some completely different technique that would

require far fewer Hamiltonian-on-vector multiplications. For example, the Lanczos algorithm can

be generalized to the RPA Hamiltonian matrix. Each HY multiplication gives data for a discrete

approximation to the strength function that satisfies one additional moment of the Hamiltonian

[65]. If this can be applied to the TDLDA Hamiltonian, the computation time could be reduced by

an order of magnitude or more, and the method could be routinely applied.

If the response is only desired at a specific frequency, a good technique is to solve the Green's
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function as in the Sternheimer method. This has been successfully applied to atoms, solving the

equation iteratively [8]" Speciflcally, one can apply the conjugate gradient method with a double

ioop on the the wave function optimization and the self-consistent flold optimization.
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