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Collective Motion in Fermi Droplets.

G. BERTSCH
Department of Physies, Michigan State University - East Lansing, MI 48824

1. - Introduction.

These lectures will discuss the dynamics of quantum systems of fermions
bound by their own interactions. The main motivation and application of the
techniques I will discuss is to nuclei which exhibit a great variety of possible
behavior in their response. However, the techniques are certainly quite gen-
eral and applicable in other systems as well. In particular, systems of simple
atoms such as alkali metal elusters exhibit a number of propertics similar to
those of nuclei.

The first topic I will cover is the short-time response to onc-body fields.
A very successful technique for dealing with this situation is mean-field theory,
which I will review. The nuclear giant resonances are examples of properties
of the system that are well described by mean-field theory. The one-body
physics is not adequate to deal with the long-time behavior of the system,
and how to treat that is the main subject of these lectures. We always begin
by dividing the Hamiltonian into 2 mean-field part and a residual interaction.
In favorable cases, the residual interaction allows us to define a collective
Hamiltonian that operates on some fictitious degrees of freedom, which,
however, correctly simulate the motion and response of the system. Examples
of large-amplitude motions that require a collective treatment are fission,
cxotie radioactivity and the mixing of rotational bands. We will construct
from simple models of the residual interaction the collective Hamiltonian to
describe these phenomena.

At moderate excitation energy a question can be posed about the system,
whether the motion becomes random or is still collective. The venerable
compound-nucleus model of nuclear physics assumes that the motion in an
energy cigenstate is ergodie, but it is far from clear how this can be justified
from considering the properties of the residual interaction. In fact, in some
systems the Hamiltonian can have substantial random character and still
produce cigenstates that are localized. On a shorter time scale, we can ask
what macroscopic equations are appropriate to describe the motion in var-
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ious energy domains. At moderate excitation, one expects dissipation in the
equations, but so far only crude attempts have been made to estimate the
parameters. At the end of my lectures I will briefly consider these issues with
the Hamiltonians that are developed.

2. — Single-particle motion.

The starting point of theory is the Slater determinant wave funetion for
the many-particle system. In this section we will discuss the dynamics of
individual Slater determinants, and later we will combine them together to
deseribe the complete motion of the system. In principle one constructs Slater
determinants as the stationary solutions of Hartree-Fock equations. In prac-
tice, in nuclear physics, the interaction is too strong to apply Hartree-Fock
theory directly to the Hamiltonian. Instead one makes an effective inter-
action which at the Hartree-Fock level produces a model for the wave func-
tion that satisfies the empirical constraints on nuclear energies and densities,
The effective interactions can be chosen to be convenient for caleulations;
density-dependent contact interactions (delta-functions) work well[1] and
are commonly applied, using a parametrization scheme first proposed by
SkYRME. The analogous theory in solid-state physics is known as the den-
sity funetional method [2]; in treating electrons in solids the major interac-
tion is, of course, the Coulomb, but wave function effects that are not con-
tained in Hartree theory can be easily incorporated with a density-dependent
contact interaction. We formulate the Hartree theory beginning with a
Hamiltonian density that is a functional of the particle density matrix, o(r, +/),

T
(2.1) Jf:-—-—_,m S Vei-Vo+ o]
zZm =

Here ¥7[p] is the potential-energy density and the first term is the kinetic-
energy density. We have already specialized to product wave funetions to
write that term as a sum over single-particle wave functions ¢. The Hartree
equations for ¢ are derived by minimizing the Hamiltonian with respect to
variations in @. Of course, we require that the variation preserve the norm
of the wave funetion, which introduces a Lagrange mulfiplier ¢, into the Har-
tree equation,

Ve

(2.2) H,, o, .—:-—;ﬁ

37"
P + 7_8—0-‘ Py = E,Q; -
In this equation the single-particle potential ¥V is the functional derivative
of ¥~ with respect to the density matrix, I shall assume in these lectures that
the Hartree wave functions and energies are known and available; I will not
discuss any details in finding the solution to the equations. In general, the



COLLECTIVE MOTION IN FERMI DROPLETS 43

Hartree theory has many solutions, differing in the nodal structure of the
occupied orbits. In prineiple the different Hartree states are not orthogonal,
but in praectice the solutions to the Hartree equation have differing orbital
symmetry that makes them orthogonal, or, if they have the same symmetry,
the overlaps are very small. We shall treat the Hartree states as if they were

orthogonal.

2'1. External fields and the lincar sum rule. — One way to study the dynam-
ics of a system is to find its response to an external field, and we shall adopt
this approach in treating the single-particle motion. A general time-depend-
ent external field @(r)o(r, 7) can be added to the Hamiltonian density. The
problem to be solved is then the time dependence of the wave function that
evolves from a given initial condition. The equations of motion are the time-
dependent Hartree equations, which have the form

(23) (Hon - Q0 ) =1 52,

The effect of the external potential on the wave function is easily found in
the case that the field is applied impulsively, i.e. we switch the field on and
off over a very short time interval. Putting this delta-function time depend-
ence into eq. (2.3), we find that the immediate effect on the wave function
is only to give the individual particles a complex phase,

(2.4) .1, t=10,) = exp [—iQlp,(r, t=0_)

where now @(r) is the coefficient of the delta-function in time. In this per-
turbed state, the particles have an added momentum V@. The kinetic energy
of the particles is thus increased by the amount

Vol

m

Immediately after the impulse the density of the particles is the same, so the
potential energy is unaltered. Thus the total energy introduced into the sys-
tem by the field is given by (2.5). If we resolve the final state into energy
eigenstates, and determine their amplitude by considering the field @ as a
perturbation, we obtain the energy-weighted sum rule (EWSR)

(2.6) > iy E—5) = Dol aor.
b 4

Here the initial Hartree state is labeled i and the energy eigenstates in the
final state are labeled f. We also define the single-particle density n{r) ==
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= g(r, 7). This sum rule is very important for analyzing the response of the
system. Because it involves only the very-short-time behavior of the particles,
it is independent of the interaction. We often use the sum rule to provide a
normalization to the values of a measured or calculated operator strength
GlQlf™.

The particles will move with the altered momentum and the wave func-
tion changes in amplitude as well as phase. If we expand the time dependence
of the solution of eq. (2.3) in a power series in time, to next order the time
dependence is given by

(2.7) @dr, t> 0) &~ exp [—iQ] exp [—[H, Q1] g, (r, 0_) =~
~ exp [--iQ] exp [t V—-"?V] @.(r, 0) .

I wrote the time dependence in an exponential rather than as an added lincar
term to preserve the normalization of the wave function, which imposes a
condition on the second-order time dependence. Also, in going to the second
line of eq. (2.7) I assumed that the Hamiltonian is eompletely local except
for the nonrelativistic kinetic-energy operator. The ultimate effect of the
derivative operator in eq. (2.7) is to shift the wave function by the distance
the particles with a velocity VQ/m would move in a time ¢,

Ve
{2.8) @.{r, 1> 0) ~ exp [—iQ]p, (r -+ —"-? t 0_) .

Besides the displacement of the particles, there is a change of amplitude given
by the divergence of the velocity field. The impulsive potential changes the
wave function by making a coordinate transformation on the arguments of
the single-particle orbitals. Since all the orbitals are displaced the same way,
the orthogonality is preserved. Thus, if the initial state is a normalized Slater
determinant, the final state will automatically be one also. So far all of the
physics has been kinematics, with the Hartree potential playing no role.

I conclude this section with a formula for the inertia associated with single-
particle motion. It is first necessary to define a collective coordinate. I will
take the general form of cq. (2.8), taking the coefficient of VQ as a collective
variable ¢

(2.9) @, ~@,(r -+ eVQ,0_).

Then, if the excitation cnergy of the system can be expressed as a constant
times &%, the inertia is I in the relation

E_' ‘E0= %Iél .
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I obtain E — E, from the EWSR, eq. (2.6), and from eq. (2.8) we sce that
the collective coordinate is & = t/m. Then the inertia is found to be

(2.10) mf]VQ[*n &,

This is identical to the classical inertia of an irrotational fluid. It is the smal-
lest possible inertia for motion with a given time rate of change of the expec-
tation value <@>. To take a specific example, consider the quadrupole field

(2.11) @ =0—is'—}y*, VQ = (—a,~—y,22).
The inertia associated with the ficld is evaluted for a spherical system to be
(2.12) I.QD. = 2m{rH4 ,

where A is the number of particles in the system and <r?) is the mean square
radius of the density distribution.

2'2, Cubic sum rule and the diabatic frequency. ~ When the next order of
t is examined, we encounter regtoring forces that slow down the initial mo-
tion. Formally, the wave function to the next order in time is written

VQ-V] exp [i[H, [H, Q]| p.(r, 0) .

2.13) @idr,t> 0) ~ exp [—iQ] exp [t—ﬁ

If we restrict ourselves to incompressible fields, the double commutator has
the form

. 2 (VaVaQ)
(2.14) [ ,%-v] S R A A 4

The second term, proportional to the gradient of the Hartree potential, con-
tains the physics of the deceleration of the particles due to their displacement
in the potential field. However, the Hamiltonian is also changing in time,
and with the sclf-consistent potential there is an additional term at this order

(2.15) H(t) = H(0_) -+ 88—:: So(t) .

In the limit of short-range interactions, the last term just cancels the poten-
tial term in eq. (2.14). Physically, there is no deceleration from the potential
if the potential moves along with the density. The entire restoring force is
then due to the first term, which we will now interpret physically.
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Let us return to the example of a quadrupole field, eq. (2.11). This is the
simplest kind of incompressible motion possible, a uniform shear displacement,
Then the displaced wave function from eq. (2.8) is

(2.16) @@L — &), y(1— &), 2(14- 2¢)) .

This transformation is just a uniform rescaling of the three Cartesian coor-
dinates in the original wave function. If the wave function has nodes, its ki-
netic energy will be changed. In eq. (2.16), we squeezed the function in the
#-direction, so its nodes along that axis will be closer together and the r.m.s.
momentum in that direction will be higher, making a larger kinetic energy.
A good way to look at this is with the Wigner representation of the single-
particle density matrix, which is the quantum generalization of phase space
density. Any transformation induced by single-particle operators preserves
density in phase space, so a compression in the spatial coordinate must be
compensated by an expansion in the momentum coordinate.

Our quadrupole field compresses the momentum distribution in the x and y
directions and expands the distribution in the z-direction. This is illustrated
in fig. 1. To first order in the deformation there is no change in the total en-

2ep;

Fig. 1. ~ Deformation of Fermi surface associated with the scaling transformation of
the wave functions, eq. (2.16).

ergy, but in second order the kinetic energy increases. We can work out what
the increase is for an arbitrary deformation ¢ in a Fermi-gas model of the
system. Because we are looking for a quantity of second order in ¢ we have
to make sure that the deformation preserves volume to that order, An easy
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way to do this is to replace the linear scaling in eq. (2.13) by the cquivalent
transformation

(2.17) ¥'=uwexp[—e], y'=yexp[—e], 2==zexp[2e].

Then the energy change per particle may be easily evaluated in the Fermi-
gas model; the result is

AE _ (o + <o+ oty 3 ph

9 -
B A om b2m

__ Pr ©Xp [—2¢] + py exp [—2¢] + pf exp [4e] —3pp _ Opp + 0.
10m bm

This equation implies a very large energy cost for small changes in shape,
because it is proportional to the volume of the system and to the Fermi en-
ergy. By constrast, in a liguid the deformation energy cost is only propor-
tional to the surface area. To take a numerical example in a nuclear system,
consider & heavy deformed nucleus, and let us change its deformation, in-
creasing its semimajor axis by 1fm. The radius is typically about 7im, so
the deformation changes by Ae = 0.07. For mass 4 = 200 the energy cost
from eq. (2.18) is 100 MeV. This is enough excitation energy to emit a dozen
nucleons and completely change the character of the nucleus.

There is a more formal way we can calculate the deformation energy. The
overlap of the state created with the operator (2.14) and the state made with
the commutator H and @ can be succinctly expressed in terms of a new sum
rule, the cubic energy-weighted sum. This is given by

(2.19) 83 = 3 {f|QIiYNE— B\)* = — G| [H, Q)[H, [H, Q]] |¢> .
7

This sura rule is quite useful in discussing small systems of particles, but it
has also been applied to infinite systems, particularly the interacting electron
gas [3, 4]. Some lengthy algebra is required to evaluate the expectation value
on the right-hand side of eq. (2.20). The result for incompressible fields @

reduces to the sum of three integrals,

(2.20) 8,= 7—,{; dsr ZA(VquQ)(Vu ViQ) 2 (Vag?)(Vog) -+
ny <

1 3V,
— g,l,,:f“”v {(nVQYVQ)-(VV) + E—"T’fdar A3’V (nVQ), P Vo -Vn,..

The last two terms give the effect of the potential. These terms cancel for
short-range interactions. The first term in this equation involves the single-
particle kinetic energy in the ground state, and when evaluated in the Fermi-
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gas model is just the deformation energy of the Fermi surface that was dis-
cussed carlier.

To make the connection with eq. (2.18) more explicit, recall that the am-
plitude of the motion is [H, @]é in a time-dependent description. For a static
deformation energy, we require the dependence on ¢ itself. If the motion is
harmonic, this ean be done by dividing by the frequency. We may also turn
this around and define an average frequency as the ratio of sum rules,

8,

(2.21) Wi == = «

Sy

This is called the diabatic frequeney, because it is derived from the short-
time behavior of the system. This formula may also be derived by exam-
ining the high-frequency response of the system [3]. If the response is expres-
sed as a power series in the inverse frequency, the coefficients are seen to be
commutators of the Hamiltonian. Assuming the response to be dominated by
a single pole, the frequency may be found from the first two terms in the power
series and is identical to eq. (2.21).
1f we express the sum rules in terms of the deformation-dependent ener-
gies, the ratio (2.21) is nothing more than the classical oscillator formula, the
ratio of a spring constant to an inertial mass. We now have all the ingre-
dients to determine the giant quadrupole mode of oscillation. Taking the
numerator from eq. (2.18) and the denominator from eq. (2.9) and (2.12),
the quadrupole frequency is given by
$'pe/m)A 6 pp

(2,22 R L o . A P
9 mlry A 5 me(re)

We see that the frequency is inversely proportional to the radius of the gys-
tem. For nuclei, the predicted quadrupole frequency is at 63 MeV/A¥, This
value matches well with the experimental location of the giant quadrupole
vibration. The observed vibration has about 759, of the EWSR, so the sin-
gle-particle motion is predominant. The amplitude of the vibration ean be
calculated from the total energy of the excitation. If one quantum of vibra-
tion is excited, the amplitude for our heavy-nucleus example comes out to
Ae = 0.025. This is really very small, when one considers that in fission
deformations with amplitudes of the order of 1 are required to go through
the fission barrier.

I have also analyzed the diabatic motion of electrons in small metal par-
ticles [5]. The electrons are quite well described by mean-field theory and
the same considerations apply. In this case the dominant interaction is the
direct. Coulomb, producing the plasmon as the collective single-particle ex-
citation. Corrections to the classical plasmon frequency are found when one
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cvaluates the diabatie formula in the mean-field ground state. The formuls
for the plasmon ends up having the structure

where a is the surface thickness of the electron density distribution and R
is the radius of the particle. The first term is just the classical Mie frequency.
The quantum corrections which mean-field theory prediets are all contained
in the second term. There is no deformation encrgy of the Fermi surface in
this case because the electrons are displaced uniformly in the Mie oscillation.

2°3. Polarizability sum and the adiabatic frequency. — Another important
sum that T mention for completeness is the polarizability, defined by

(2.24) a=28_,=23 G| ' E—E)".
!

Because of the inverse energy weighting, this sum gives more importance to
low-frequency modes, which are often the ones of greatest physical interest.
One can define an average frequency of a mode using the polarizability sum
along with the lincar EWSR. Unfortunately, « cannot be expressed as a
closed integral over the ground-state variables. To apply the sum, one must
either solve the Hartree problem explicitly in an external field to polarize
the system, or one must make further approximations to reduce the Hartree
Hamiltonian to a classical Hamiltonian.

It is found that the shape polarizability of a Fermi droplet is very sensi-
tive to the specific shell structures of the system. For particle numbers such
that the valence shells are closed, the polarizability formula gives a result
not very different from the diabatic approximation, but for open-shell sys-
tems the polarizability can be very large with transitions between low-energy
single-particle states. In nuclear physics, the spin-orbit field introduces a
shell structure that is rather easily distorted by a quadrupole field. What
emerges is that the quadrupole strength function has a low-frequency com-
ponent in addition to the giant quadrupole vibration. The amount of strength
in that component is only 109 of the EWSR, but the matrix element can
be very large if the frequency is low. This happens in the deformed nuclei,
where the strength is concentrated in a state that is physically just part of
the ground-state rotational band.

3. — Shape changes by configurational rearrangement.

We saw in sect. 2 how the single-particle ficld could change the shape of
the system. The energy cost for Fermi systems turned out to be high, de-
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pending explicitly on the Fermi energy. A more favorable way to change
shape from an energetic point of view is to move particles from one orbit near
the Fermi level to another. This presumes one has a residual interaction that
is capable of connecting the two single-particle states. We will discuss the
interaction physies in the next section; here we simply want to count states
and see how much of a configurational rearrangement is necessary to achieve
& given shape change. The relationship between shape and energy of config-
urations is shown schematically in fig. 2. The energy of different configu-
rations is represented by the parabolic functions of deformation. As one moves

>
-

3

Fig. 2. - Schematic view of the energy of a fermion droplet as a function of deforma-
tion coordinate. The parabolae show the energy of individual configurations of the
constrained Iartree Hamiltonian. The lowest-energy path in a large-amplitude defor-
mation requires jumping from one Iartrce configuration to another,

in shape from a given Hartree minimum, one reaches a crossing where it be-
comes energetically favorable to change configuration.

The counting of states can be done by making the deformation in two
steps. The first step uses the single-particle field, achieving the new shape
at the cost of a deformed Fermi surface. In the second step, the particles are
moved between orbitals to restore the spherical Fermi surface. In the clas-
sical limit, moving particles in momentum space will not change the density
distribution, as long as the volume in momentum space remains the game.

The main obstacle that can arise in carrying out this procedure is that
the particle wave functions may not separate cleanly into states above and
below the Fermi sphere. A given wave function might be distributed partly
above and partly below the Fermi energy. Certainly in the original represen-
tation of the wave function, the transformed orbitals will straddle the sur-
face of the Fermi sphere. However, any orthogonal transformation among the
occupied orbitals has the same Slater determinant wave funetion, so a repre-
sentation might to be found to separate particles above and below the Fermi
sphere. For example, diagonalizing the single-particle Hamiltonian within the
basis of the occupied orbitals would separate the single-particle state by en-
ergy. However, the difficulty of orbits straddling the Fermi level can only
be overcome if there is an integral number of particles above the spherical
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Fermi surface. Otherwise, moving integral numbers of particles could not
restore the spherical shape. This seems to be the most important condition
in practice in making a deformed state of low excitation energy.

We, therefore, deform the system enough to put an integral number of
particles above the Fermi level, and then rearrange those particles. Since
local density is nearly preserved on both transformations, the potential energy
associated with & short-range interaction will be the same. The kinetic energy
is also preserved, with the Fermi surface restored to spherical. Thus the new
state will have nearly the same energy as the original state, with the changes
being due to finite-range effects, and the possible imperfections in the Fermi
surface with the new occupation numbers. On the average, this latter con-
sideration would favor neither the initial nor the final state, and so would
not produce any systematic error.

This procedure gives us a systematic way to change the shape of the sys-
tem, keeping always to low-energy states. Let us see how this works for the
quadrupole field. We first use the field to change the shape, giving a deforma-
tion e. The new Fermi surface is now deformed by the same amount, and
the number of particles above the spherical Fermi surface is given by the in-

tegral

2x 1

2 2 4m 2ed

3 12 s 3 0pP,( e S DY Y Ol

(3.1) gfdrqua(zn)s fdcosOp, eP,lcos 6) (2;::)33\/’3”"7 V3
Y 0 1v3

In this equation %" is the spatial volume of the droplet and g is the degen-
eracy of the orbitals due to internal quantum numbers (spin and/or isospin).
In the last step we expressed the phase space volume in terms of the total
number of particles 4 in the system. The rate of configurational change as
the nuclens changes shape is then given by

(3 9 il_’y_’l =— _L)il_
.u) de - ‘\/g'ﬂq t

where n, is the number of particles that are moved in a given configurational
change.

Equation (3.2) works quite well both for light and heavy nuclei, in cases
where it has been compared to more detailed treatments of the wave func-
tion. In light nuclei, there are states at relatively low excitation known to
be highly deformed, exhibiting a rotational-band structure with large quad-
rupole transition strengths between members of the band. According to
Hartree calculations, these states are made by moving 2 protons and 2 neu-
trons from an orbital with a large negative quadrupole moment to one with
a large positive moment. The deformations of these states are quoted in ta-
ble I, comparing the empirical observed deformation with eq. (3.2). The agree-
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TaBLE 1. — Characteristics of deformed states in light spherical nuclei. Equation (3.2)
is applied with =, = 4.

Nucleus Deformation

oq. (3.2) experimental
180 0.22 0.26
40Ca, 0.085 0.082

ment is surprisingly good, considering that eq. (3.2) is based on Fermi-gas
arguments and the average behavior of orbitals without any specific shell
cffects.

It is amusing to also look at the excitation energy of these deformed states.
According to the Fermi-gas picture, the kinetic energy is the same as in the
ground state, and the potential energy is nearly the same for a short-range
interaction. Energy differences come from liquid-drop considerations, namely
the increased surface energy in the deformed state. When the energy differ-
ence is estimated by these liquid-drop considerations, it comes out in rea-
sonable agreement with the observed excitation energy. However, this com-
parison is misleading because the Hartree calculations only confirm the mag-
nitude of the deformation of these states. The cnergies in Hartree theory
come out too high. In the theory of heavy nueclei, very detailed studies have
been made of the single-particle level structure as a function of the deformation
of the system [6]. Onec obtains level crossing schemes such as shown in fig. 3.

Fig. 3. — Single-particle energics of neutrons for the nuclous 238U, as a function of
deformation [6]. The lowest many-particle state changes configuration at the dots,
which are located at the Fermi energy.

As the deformation changes, some levels dive below the Fermi energy and
others emerge from the sca. Each crossing at the Fermi energy requires the
particles to jump from one level to the other in order to remain in the lowest-
energy state. For the interval shown in fig. 3, the total number of erossings
is 29 counting both neutrons and protons. Equation (3.2) gives 32 jumps, again
adding neutron jumps and proton jumps. This is a better accuracy than we
know the residual interaction, and is sufficient for our purposes.
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There is one other situation that I will deseribe in more detail later. That
is the shape change that a heavy nucleus undergoes when it emits a much
lighter nucleus. Such a decay in energetically allowed for heavy nuelei, but
the rate is low because of the external Coulomb barrier which must be pene-
trated, and because there is an additional barrier penetration for the unfa-
vored shapes. In order to describe the shape dynamics, we need to know how
many configurational rearrangements are required to get from the initial
nearly spherical shape to the final shape, which is that of two touching nuclei.
We do this by applying a generalized version of (3.1) that includes many mul-
tipoles in the deformation field. The field is defined so that, at the end of the
deformation, the multipole moments of the transformed density match the
moments of the touching-sphere configuration. This is illustrated in fig. 4

Fig. 4. - Outline of touching nuclei “C and 2¢Pb, compared with the parent nucleus 22Ra
{dashed line). The shape obtained by deforming the parent distribution with an inecom-
pressible displacement field carrying multipoles up to L = 10 is shown with the thin
line.

for the case of »Ra emitting a 10 particle. In order to arrive at the final
density distribution, the field must be broken down into small displacements
and these applied in succession to the original density distribution. The re-
sults of this turn out to be rather simple, Namely, it is found that the number
of nucleons that must jump orbit is about twice the number in the smaller
of the two daughter nuclei.

It is possible to sce with a simple argument the reason for correlation be-
tween the size of the daughter and the number of orbital transitions. The
single-particle phase space density moves with an incompressible flow under
the deformation transformations. If particles are moved out of a surface in
coordinate space, then to preserve the density other particles are moved into
the phase volume through a surface in momentum space. In the complete
transformation, the number of particles that are moved outside the original
spherical surface of the nueleus is the number in the small nucleus to be emit-
ted, and a roughly equal number on the other side of the large nuclens to
balance the center of mass at the center of the original sphere, The same
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number of nucleons should be moved through the Fermi surface, and the
orbital changes are required to bring them back. Later I will use this to esti-
mate the radioactive decay rates of these nuclei.

4, — Collective motion.

4'1. A baby model. — Before I go into any general techniques for dealing
with the configuration interactions, I will construct a very simple model that
exhibits collective motion. Let us consider a linear sequence of Hartree con-
figurations, and a residual interaction that only connects nearest-neigbor
shapes, with a constant off-diagonal matrix element ». The Hamiltonian for
this system is a tridiagonal matrix with elements » just off the main diagonal.
It looks like this:

[E, v 0 ..
v ¥
(4.1) H=| 0 v E,

v

| e e e e |
On the main diagonal the elements are the Hartree energies of the configura-
tions. The states are ordered in sequence aeccording to their shapes—for ex-
ample, according to increasing quadrupole moment. We want to treat the
shape as a continuous degree of freedom. A connection will be obvious to
anyone who has solved the one-dimensional Schrodinger equation on a mesh
in coordinate space. The second derivative operator in the Hamiltonian is
replaced by a second difference operator, which corresponds to a tridiagonal
matrix. The same correspondence holds for the low vibrational frequencies
of a linear chain of atoms. In the Hamiltonian (4.1), if the step interval be-
tween states is Az, the kinetic-energy operator — (%2/21)(02/02?) is replaced by
a matrix with

7
(4.2) L L
This model of configuration mixing would be appropriate in a weak-coupling
limit, where the interaction is so weak that only coupling between neigboring
configurations need be considered.

In the nuclear Hamiltonian problem, the interaction is actually strong
enough so that many neighboring configurations need to be treated at the
same time. I will improve the model shortly, but first I want to discuss some
systematic procedures for deriving collective Hamiltonians.
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4'2. Collective momenta and inertias. — I begin assuming we have a de-
seription of the system in terms of approximate eigenstates that are labeled
by some parameter. For the nuclear case, I always have in mind a parameter
deseribing the shape of the system, for example the quadrupole moment,
To make this parameter a collective coordinate one must construct a Hamil-
tonian that has a kinetic-energy term with a conjugate momentum. So the
next task is to define momentum. Given a wave function with a smooth de-
pendence on the coordinate, the momentum operator p may be defined in the
usual way by taking the derivative of the wave function with respect to the
coordinate. It is then possible to use the expectation value of p to construct
states of different momentum. To be concrete, let us call the coordinate 2z
and let p(2) be an approximate eigenstate at that position. For example, the
state might by a constrained Hartree configuration and z the expectation
value of its quadrupole moment. Then a state having momentum expecta-
tion k¥ may be defined as follows:

. ik o
(4.3) Pilz) = (1 s u I ) 5;) p(2) .

I will call this the sudden approximation. This is only one choice of many
we could make for ¢, since the only requirement we have imposed is on the
expectation value of p. For example, if the operator were part of the Hamil-
tonian and were turned on gradually, the components of the admixed wave
function would be weighted with the reciprocal of the excitation energy, as
in perturbation theory. This leads us to the adiabatic definition of the state ¢,,

o i ik 1 ﬁ
(4.4) @k () = (1 + 2{0p[0z{1(E — H)|0p[oz) E—H ’o‘z) e

It is rather easy to construct wave functions of this kind in Hartree theory.
One simply adds to the Hartree potential a term with the momentum operator
in it. For example, rotations are put into the wave function by including in
the Hamiltonian a term proportional to the angular-momentum operator,

Having settled on some definition of the momentum states, we next need
to see how the energy of the state depends on momentum. Then time-depend-
ent wave packets can be constructed and the collective motion emerges
directly. We simply take the expectation value of the Hamiltonian in the
state (4.3) or (4.4) and see how it depends on %. Since the change in energy
is second order in k, we evaluate the expectation of H — ¥ to avoid problems
with the normalization in (4.3) or (4.4), that intrude at second order. Then
the collective inertia I will be related to the coefficient of %* as

. k
(4.5) (Pl H—Elpy = =+ .
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Applying this to (4.3), we find that both the k-independent and the linear
term in % vanish, leaving just a quadratic dependence, which is given by

1 _ {3¢[es|H— E|eg/ez)

Wikl 51~ 4gilegeey?

This is known as the Yoceoz inertia [7]. A different formula for the inertia
may be obtained using the wave function eq. (4.4). The expectation of H — E
in the adiabatic state is

K @pfSz|(1 (B — H))(H —B)(1 [(B— H) |opféz> _

WY B =g g a1 (B — ) g 675"

Then the inertia from eq. (4.5) is given by
i e
(4.8) - <_ . Sﬁ) .
, — | C&

This treatment of the collective motion is known as the cranking model. It
was first derived by including in the Hamiltonian an external time-dependent
field, and relating the additional energy to the velocity of that field.

As a simple application of these techniques, let us return to the baby model
defined carlier. To make a wave function that depends continuously on z,
I define @(2) as a Gaussian wave packet of the configurations:

*
(4.9) @(2) =~ (%Azz) > exp [—alz,—2)2]¢, .
5 "
If « is small, the derivative wave function is given by the expression

& 22 :
(4.10) %2: o (E%—) > alz,—2) exp [—alz,—2)32]@, .
Inserting this in eq. (4.3), we find that the state ¢, in the sudden approxima-
tion is given by

o Az2\1
(1.11) g3 ~ (-T) > (1 -+ ik(z,—2)) exp [— oz, —2)%/2] g, .

This is just what we would expect from expanding a momentum factor exp [ikz].
We next evaluate the Yoccoz and adiabatic inertias, In the expression
for the Yoccoz inertia, eq. (4.6), we replace the sums over n by integrals, which
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is accurate if @ << 1. Then the expressions are equivalent to those obtained
with harmonic-oseillator functions of a continuous coordinate. The resulting
inertia, using the Hamiltonian (4.1), is incorrect for both the Yoccoz and
adiabatic formulae. This deficiency of the Yoccoz inertia is well known, and
can be rectified in various ways, such as by a momentum projection [7].

The adiabatic formula, eq. (4.8), is intended to be used with the approxi-
mate Hamiltonian that has the wave packets such as eq. (4.9) as eigenstates.
Since (4.9) has the oscillator form, the approximate Hamiltonian in this case
is harmonic, %.e.

jut'
(4.12) ; A _1} (- e—?z—, K> ac’z’)

with I == « and I == }(dz/dn):(1/v). Then the energy denominator in the
adiabatic formula is @ and the expression yields the correet inertia.

The adiabatic inertia is most commonly applied with mean-field Hamil-
tonians. The energy denominator in the formula is then a single-particle ex-
citation energy. An adiabatic treatment of time-dependent Hartree theory has
been proposed as a way to obtain semi-quantal extensions of TDHF. Refer-
ences and a full discussion may be found in ref, [7].

5. — Models.

5'1. Spin barrier model. — In this seetion I will describe a model that I
studied together with J. NEGELE, G. Puppu and P. ARvE [8]. The purpose
of the model is to fest the various approximation methods that have been
developed for treating barrier penetration in many-particle systems. The re-
quirements of the model are first that it be simple enough so the solution ean
be found to whatever accuracy is desired. To test the separation between
the single-particle and configurational dynamiecs, we include in the Hamil-
tonian a continuous variable, which we call 2, to simulate the dependence of
the single-particle wave function on position. The model also needs to have
multiple Hartree minima, to mimic the physical situation when the Hartree
problem is solved for fermion droplets. We accomplish this by including an
additional variable in the single-particle wave function, which we treat as a
spin. The two values taken by this variable then stand for two states in the
transverse and other degrees of freedom. For the barrier problem, the energy
of the Hartrce states should be low in two regions of configuration space, sep-
arated by states of higher energy. We formulated s simple model meeting
these conditions starting from a harmonic-oscillator Hamiltonian in the z co-
ordinate for & distinguishable particles. These are coupled by two-body inter-
action, so additional terms are at most quadratiec in the single-particle oper-



- G. BERTSCII

ators. The z-dependent part of our Hamiltonian is

(5.1) A (—1’ d%; s za) 4o (iz) (i o,(i)) .
2 < ‘

=1 1

The second term gives the barrier physics: the lowest-energy states have spins
all up or all down, and the oscillator wells for these states are shifted to one
side or the other of z = 0. In addition, we need to include in the Hamiltonian
& part that breaks the symmetry and allows the wave function to mix with
configurations in between. We take this to be a pure spin-spin interaction,
speeifically

N 2
(5.2) H'=) (E a,(z‘)) g

i
The resulting Hamiltonian may be viewed as a generalization of the Lipkin
model [9] which has been used in the past for studying collective motion.
The Lipkin model only has a spin coordinate, which is too simple to simulate
barrier penetration with only two-body interactions. To solve the Hamil-
tonian by brute force, we use the eigenstates of (5.1), which may be classified
according to the total azimuthal spin, M = {3 ¢,(i)>. The single-particle

¢
Hamiltonian is then just a shifted harmonic oscillator, and the orbitals are
just the appropriately shifted oscillator states,

(5.3) @iy M, v)~H,(2 -+ M) oxp [— §(z + »M)?].

The lowest many-particle state for a given M is just the product of the ground-
state orbitals. In considering excited states, note that the interaction depends
only on the total spin and the total z coordinate, Z = 3 #z,. The wave func-

i

tion, therefore, factorizes into a part depending on Z and I, governed by
the oscillator Hamiltonian, and a part that does not change. We will consider
the states that couple to the lowest states, which are completely symmetric
functions of the coordinates of the N particles. The internal wave function
in this case is the ground-state oscillator function and the particles may as
well be considered bosons. For later use I display the formulae for the matrix
elements of the Hamiltonian. The shifted-oscillator representation, eq. (5.3),
is used. The diagonal matrix elements are

(5.4) <M, v|Hy+ H'|M,»> = i:- 4 v—;l; Nwa Mt AN + % (N1 — M) .

Here » labels the oscillator state in the Z wave function. The off-diagonal
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matrix elements connect states M with M4 4, and are given by

(5.5) M —=2,y|H'|M 4+ 2,v") =
0 VN‘—MN—}— M(N—M+1)(N+ i )

: ——1
2 2

min(y’,p} 1 1 N »'+y~2n
— 4 N 3% § —\rn s i
«exp [— 4N x2](v'1p!) z (—) 'II)'(V—”)'(I/ 3 4#) z

n=0

The first approximation to be considered for this Hamiltonian puts it into
the framework of the baby model discussed in subsect. 4'1. This requires
that we make the Hamiltonian tridiagonal. This is done by truncating to
the » = 0 subspace. In effect, we throw away the single-particle degrecs of
freedom. It is then straightforward to derive a continuum Hamiltonian fol-
lowing subsect. 4'1. We choose a continuous collective coordinate 2 which
ranges from — 1 to 4 1 as M ranges from — N to -+ N, i.e. © = M|N. We
also drop terms of order 1/N to arrive at a fairly simple collective Hamiltonian

- d d .
(;)-6) IIm"=——4’A’d_—l‘(l—za)a;-—loxs’

where

Vool d |;|

We have used the freedom in choosing the phase of the wave function to make
the relative amplitudes of different M’s positive for the ground state. Hence
2 appears as an absolute value in eq. (5.6). Inspecting the equation, it is ob-
vious that the Hamiltonian has a barrier provided 1 is not too negative. We
call this model the eontinuum hopping approximation. Note that the inertia
is singular near the endpoints. This is only a problem of the continuum Hamil-
tonian arising because terms of order 1/N were dropped. In sect. 6 we will
compare the WKB solution of the continunm hopping model with the (nu-
merically calculated) exaet wave funetions.

The next method we consider is the cranked Hartree approximation. We
apply an external field in 2 which we use to constrain the Hartree solutions
to have an given expectation value, {#). The Hartree Hamiltonian has the
form

(5.7) Heyp.=—3 — ; 2+ (o) 2 + #(2) 0, + 2o 0.+ f2.

Here f is a constraining field, which is chosen to produce a solution at the
desired {2). The expectation values are the matrix clements of the operators
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in the many-particle Hartree state. The solution will be a single-particle wave
funetion that has a spatial dependence exp [— (v — (2)/N)?/2] and a spin wave
function

- __{cos(0]2)
8 x= (sin (0/2)) :

The expectation values of the spin operators in the N-particle state are
5.9) {o,) = N cosf, {o,> = Nsinb.

From the coefficients of ¢, and o, in the Hartree Hamiltonian we can see that
the spin is oriented in the direction (x<z), 24<0.)). Setting this proportional
to ({o.), {0.)), we infer that ecither <o,> = 0 or

(5.10) (o> = ’ig?

These relations are sufficient to express the wave funetion in terms of {2>.

The solution of the Hartrce equations has several interesting features.
First of all, all solutions have zero expectation of o, if the residual interaction
is repulsive (2> 0). In fact, to correspond with a physical nuclear Hamil-
tonian, such as one that produces a pairing ground state, the residual inter-
action should be attractive. So from now on, I will only discuss the case where
the interaction is attractive. Then the Hartree solution may have nonzero
{o.) for a limited range of ¢{z). The locus of expectation values for the con-

|
-1.0 ~-0.5 0 0.5 x 1.0

Tig. 5. — Expectation values of o, and x == (z)/xN for the constrained Ilartreo solu-
tions to the Ilamiltonian (5.1), (5.2). The solid line shows the path using the con-
straining field z. The dashed line uses o, as the constraining field. The parameters
of the ITamiltonian are given in the caption to table II.
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strained Hartree solutions is shown in fig. 5 for a typical parameter set. Necar
the endpoints of the interval, <o, is zero and the Hartrce state is the pure
configuration with M = 4- N, The motion is entirely in the single-particle
degree of freedom up to the point where the locus breaks away from the %
axis. At that point the states of different M mix and the wave function can
be continuously deformed from A = 4 N to M = — N. The Hartree ener-
gies in the different regions are given by

N z)3
>+ i :,— — %<2 )N, outside barrier,
(5.11) Egrtees = N

1/1 A v :
=y - g (F + g‘j) (#>*4-AN2, barrier region .

Equation (5.11) is plotted in fig. 6 as a function of #. It may be seen that the
two pieces join to make a smooth Hartree energy function. To continue the

19.4 -

potential energy
>
=]

1 ST j— T 1
-1.0 -0.5 0 0.5 x 10

Fig. 6. — Hartree energy of the Hamiltonian (5.1), (5.2), as determined with eq. (5.11).
Solid and dashed lines are for the two constrainings ficlds as described in the caption
to fig. 5.

construction of a collective model, we apply the cranking formula, eq. (4.8),
to the Hartree wave function considered as a function of {z). In the outside
region the inertia just reduces to the inertia of the center-of-mass motion of

N particles moving along the z axis,

_— g o KEN, Y= 1dAG £ N,y = O 1
el .Sk Ey_l—_Ev_o Ar *

There are two contributions to the inertia in the barrier region. The first is
from the z-dependence of the wave function, and is identical to (5.12). There
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is also a contribution from the spin dependence, and the total is

xﬂ

BIA(aN T2 — DY)

= 1
(0.13) & =F+

For the parameters we choose in the Hamiltonian, the second term dominates
to the extent that the z contribution can be neglected in the inner region.
Of course, it is the entire inertia outside. One last point that should be men-
tioned is that the inertia (5.13) becomes singular at the junction between the
inner and outer regions. This is not fatal, because integrals remain well be-
haved, but this pathology might make eranking less reliable in this situation
than with a more realistic Hamiltonian,

The final model I want to apply is the time-dependent Hartree approxi-
mation in imaginary time. This model was first developed for field theory [10]
and was introduced for studying nuclear collective motion in ref. [11]. How-
ever, discussion of the details of this method is beyond the scope of these
lectures.

5°2. Pairing models. ~ The Hamiltonian (5.1), (5.2) is too simplistic to ex-
hibit many interesting aspeets of pairing, such as the odd-even effects. We
will now examine a Hamiltonian in which pairing is the dominant feature of
the interaction and see how to construct collective dynamics. In the BCS
pairing model, the interaction Hamiltonian is given by

’ T W
(5.14) H'=g3> a;a;aa,,
64

where the primed sum includes the pair (i7) only once. The single-particle
levels are a function of the collective coordinate 2z, and we wish to ealeu-
Iate the inertia associated with motion in the 2z coordinate. In order to pro-
ceed, we will classify states into two types, depending on whether the single-
particle energies increase or decrease with z. The many-particle wave function
can be expanded in terms of states with a definite number of particles in the
two categories of orbitals. Let us eall #» the number of pairs in the upward-
moving states. Then for a fixed total number of pairs ¥, the wave funection
can be expressed as a sum over the product of wave functions of the form

(5.15) p(n) = p,(n)p (N —n).

Here yp, label the wave functions for the particles in the upward and down-
ward going orbitals separately. When a pair jumps from one type of level
to the other, the Harfree self-consistency is satisfied only when z changes.
Thus # is a discrete coordinate that correlates with the continuous coordinate z.
We can apply the continuum hopping model by calculating the interaction
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matrix element between a state with one value of n and its neighbor with
n 4= 1. The pairing mafrix element connecting neighboring configurations is
given by

(5.16) © = g<p.(m)] 3 aza,lp.(n 4 1))p_ (N —n)| 3" al atjp_ (N —n—1)}.

In the limit where y, are pure configurations the individual pair amplitndes
in the above equation are 1, and we recover the weak-coupling approximation
that was discussed carlier. In the presence of pairing with g larger than the
single-particle level spacing, the configuration mixing enhances the pair addi-
tion and removal amplitudes in eq. (5.3). To estimate this quantitatively,
we first express the pair addition amplitude in terms of the pairing gap delta
using the BCS wave function

RSN

(5.17) {¥pcs) z' af “;‘r [YBegy =

To relate this to the number-conserving states in eq. (5.2), we must establish
the relationship between the BCS wave function and the number-conserving
py(n) defined above. The BCS wave function is a linear combination of these
states of the form

(5.18) Yacs = (Sbaps(0)) (S bup ¥ —m)

where the b, are amplitudes that vary smoothly with #. Assuming that the
matrix elements also are smooth functions of #, the pair addition amplitude
for the BCS state may be expressed in terms of the amplitudes for the yp,,
and we find

(319)  <ynesl X' af allypesd = 3 babuianlpin +1)] X' af aflp, () +
+ 3 babuaCp (N —n)| 3 af adlp (N —n—1)) =
~ 2 pa(n +1)| 37 af allyain)> .

We now use this to evaluate matrix elements in eq. (5.16) and we arrive at
a hopping matrix element

(5.20} P =—.

The resulting collective Hamiltonian is then given by

d 4® (dz\* d 2¢ {dn\?
(5.21) H""‘:_EETg(cTn) =, IM_E(E) _
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Here dzfdn is the reciprocal of the number of level crossings per unit interval
of 2. This quantity can be estimated by the Fermi-gas model discussed in
scet. 3. A is known experimentally, so the only quantity that is physically
obseure is the pairing interaction strength g. The relation between g and 4
involves a logarithmic cut-off on the energies included in the configuration
space; nuclear models often use a cut-off of one major shell of configuration
space which yields A/g~ 5--10.

We next want to consider the cranked BCS approximation. The formula for
the inertia is given by eq. (4.8). To apply it, we nced to evaluate the deriva-
tive of a BCS wave function with respect to z. Tirst let me remind you of
definition of the BCS wave funetion. The wave function itself is the product
of operators acting on the vacuum,

(3.22) p= [T’ (cos0,-+sinf,alaf)] >.
4

The angle of mixing between the empty and occupied states is related to the
pairing gap and the single-particle excitation energy & — 4 by

1, tg—l __4.,_

“ 8'—)»

(5.23) 0, =

Here A is the Fermi cnergy of the system. The pairing gap A is computed
from the pairing amplitude as

(5.20) A= gl Salaflyd =g Ssind, cos0, =24 3
¢ i

To determine the cranking inertia, we first find the derivative of the wave
funetion (5.22) with respect to z. On a single pair operator, the derivative is
(5.25) d% (c0s 0, + sin 0, al al) = (—sin 0, + cos 6, a’ at) % .

The factor in parentheses represents a normalized two-quasi-particle excita-
tion, so the matrix element to the two-quasi-particle state is just de./dz.
This derivative is evaluated using eq. (5.23),

do, — 4 de,

Hei T eI A &

The excitation energy of the two—-quasi-particle state is twice the quasi-particle
energy, and is given by

(5.27) E—Ey,=2%e,=2V(e;,— 2)* + A°.
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We colleet these pieces together and insert in the formula for the cranking
inertia, to find

s O ()
oy Tow =3 2 (=2 - 298 (dZ) '

An analytic estimate may now be obtained by replacing the sum over states
by an integral over ¢ times the single-particle level density dn/de,

(529) Fe=22 (‘_13')’ f . . JU— 3 (9_8)’ R
’ 4 del\dz/,, ) ((e— A+ 43t 342 \dz),, de
This expression was first derived, up to an overall factor, by BRACK et al. [12].
1t varies quadratically with the pairing gap, as we found in the hopping treat-
ment, eq. (5.20). The two formulae for the inertia may be compared more
closely if we replace de/dz by a product of factors we have estimates for,
2(de/dn) (dn/dz),

4 de {dn\?
(5.30) RN (?12) )

We sece that the two expressions eqs. (5.21) and (5.30) are not identical. In
view of our cxperience with the baby model, we are inclined to distrust the
cranking result.

Some numerical estimates are in order to make contact with the physical
world. Let us consider quadrupolar inertia for a system with density n, and
radius B. The quadrupolar coordinate will be taken as the parameter ¢ in the
displacement field, eq. (2.9). For comparison purposes, recall the eclassical
fluid inertia, eq. (2.12),

(5.31) I3 = 2mirH A .

For a nucleus with 200 nucleons the numerieal value of this inertia is 1/0.7-
*10-2MeV. To compare with the hopping inertia, we apply eq. (3.2) for the
level crossing rate. The pairing strength for neutrons or protons separately
has the approximate value 4 ~ 1 MeV. We use for g the value for the space
truncation of a single major shell, ¢ = 0.14 [13]. The numerical value of the
inertia works out to be the following:

5.3¢ i ] e = ~ — .
HRAE 4 (dz A2 A2 392 2 0.6-10-% MeV

d-n)' 29 4 A*2(0.14) 1

Finally, we apply the cranked BCS formula, eq. (5.29). This requires the
level density of pair states, which is related to the single-particle level den-
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ity in the Fermi-gas model as follows:

(5.33) ‘_1.7_"=1§f %3_11
de 2 de/,

ingle partlcle 461"

The resulting inertia is then

1, 1\44e.44° 8 £ A 1
t"34 —_f — g _._E.___ :__E_z‘____.
W La (A: + A;) 33843207 27 A* T 10~ MeV "’

The pairing-induced inertias are similar in magnitude. They are, of course,
larger than the classical inertia for smail systems, which includes all observ-
able nuclei.

What is not contained in these formulae is the approach to the classical
inertia for large systems. As the size of the system is increased, the single-
particle contribution becomes more important in the inertia and eventually it
dominates. In order for this to happen, the energies of the single-particle
excitations would have to lie in the encrgy gap 4. From the estimate of the
quadrupole frequeney, eq. (2.22), this would only occur in nuclei containing
several thousand nucleons.

6. — Findings.

In this section we apply the models discussed in sect. 5. We first examine
the results of the spin barrier model [8], which we regard as a testing ground
for various approximate treatments of collective motion. The spin barrier
Hamiltonian, as given by eqs. (5.4) and (5.5), can be diagonalized numerically
to get «exact » results to compare with. We have to decide what parameter
values to take in the Hamiltonian., The physical situation we have in mind
is the spontancous fission of nuclei, so we take N = 40, which is comparable
to the number of orbital jumps that occur during the fission process. Also,
this N is large enough so that the continuum treatment should apply. The
encrgy scale of the single-partiele Hamiltonian should be characteristic of the
single-particle motion. If we identify it with the giant guadrupole frequency,
then the unit of energy in the Hamiltonian (5.1) corresponds to about 10 to
15 MeV. The next parameter to be set is the physical barrier height. For
the nuclear-fission problem, this has the order of magnitude of 5 MeV. Thus
the parameter V, in eq. (5.6) should have a magnitude of § to }. The last
physical quantity is the interaction strength, which we try to set by the anal-
ogy with pairing. From the discussion at the end of sect. 5, the empirical
pairing strength connecting neighboring configurations should have a magni-
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tude of about 2.5 MeV. The Hamiltonian (5.2) has a varying off-diagonal
matrix element, and we have to decide whether to fit the pairing in the bar-
rier region or outside. The middle of the barrier is the most important region,
80 we will pick a value of 1 that gives a matrix clement of about 1 there. In
the study below, we take 4 = — 0.0005 and » = 0.006 403, This gives a matrix
clement between configurations of § and a barrier height of 0.51,

The diagonalization of the Hamiltonian produces eigenvalues that are
nearly degenerate in pairs for energies below the barrier. The splitting of the
degeneracy is due to the barrier penetration. In table II we quote the en-

Tasie II. ~ Eigenenergies and splitting of states for the spin barrier Iamiltonian,
egs. (5.1}, (5.2). The parameters in the Hamiltonian are N = 40, » = 0.006 403,
4 =~ 0.0005. The first two columns of splittings AE are the results of diagonalizing
the Hamiltonian in the basis of eq. (5.3), truncating the number of oscillator gquanta
as indicated. The next column gives the WKB solution, eq. (6.1), using the collective
Hamiltonian from the continuum hopping model, eq. (5.6). The next column gives
the corresponding result from the cranked Hartree Ilamiltonian, eqs. (5.12) and (5.13).
Finally, the last column shows the result from the imaginary time-dependent mean-
field equations.

E log AE
diagonalization continuum cranked imaginary
(v = 4) (v = 0) hopping Hartree TDHF
0.015 — 13 — 13 —12.4 —19 — 13
0.170 — 8.9 - 8.9 — 9.5 — 13.8 —
0.305 ~ 5.9 — 5.9 — 6.1 — 6.7 —
0.418 — 3.5 — 3.5 — 3.5 — 4.2 —
0.505 - 1.9 - 1.9 - L7 — 1.8 —

ergies F and splittings AF of the low states of the Hamiltonian. Note that
tho degeneracy splitting becomes very small for states far below the barrier,

as expected.

6°1. Role of single-particle motion. — The first two columns of splittings in
table IT show the results of the diagonalization for two truncations of the
Hamiltonian. In the first case we keep oscillator states up to » = 4. Next
are displayed the results keeping only » = 0 states. Comparing these two, it
is clear that single-particle motion plays an insignificant role in the barrier
penetration, We argued in the second seetion that single-particle motion was
too costly from an energy point of view to be dominant, but from this result
it is clear that we can neglect it completely. That conclusion depends on the
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single-particle frequency being larger than the barrier height. It would be
interesting to also cxplore what happens in the opposite limit.

The single-particle motion must also become important when a lot of en-
ergy is brought into the system through the single-particle degrees of freedom.
This is the case in heavy-ion collisions at energies above the Coulomb barrier.

6°2. Tunneling. - We now consider the various treatments of collective
tunneling and compare with the diagonalization of the spin barrier Hamil-
tonian. The physical quantity that can be extracted from the Hamiltonian
is the splitting of the states of opposite parity with respect to the barrier top.
However, the splitting depends not only on the barrier but also on the details
of the wave functions in the allowed region. The number of degrees of freedom
active in the allowed region will depend on the collective treatment, and the
tunneling is affected because it is proportional to the wave function ampli-
tude at the barrier. The more degrees of freedom are active in the allowed
region, the smaller will be the amplitude of the wave function at the barrier
and the smaller will be the splitting. So we should be careful in comparing
the barrier physies of different models to treat the allowed degrees of freedom
on an equal footing. The dependence of the splitting on both the barrier pene-
tration and the allowed degrees of freedom is contained in the WEKB formula
for the level splitting. This is given by [14]

(6.1) AE = (.qn./%?—)—‘l exp [—fp (Lt] )

where dn/dE is the density of states on one side of the barrier. The exponen-
tial is the usual WKB integral for the penctration amplitude (not probabil-
ity!), with limits of integration at the two classical turning points. We shall
compare various treatments with the exact one using eq. (6.1), caleulating the
penctrability according to various collective methods. The density of states
will be taken from the actual Hamiltonian,

(6.2) dn) 2
¢ V4] —— — e
defe, Eia—E,,

Then splittings may be compared directly with those of the diagonalization.

Before proceeding with the comparison we make one remark on the gen-
eral validity of the colleetive treament. Of the methods that we have applied
for the tridiagonal matrix, the continnum hopping model appeared most re-
liable. However, there are certainly limits on the applicability of a continuum
limit. The relevant parameter is the ratio of the off-diagonal matrix element,
v, to the energy below the barrier. If that number is large, the amplitude of
the wave function will only change by a small amount from one state to the
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neighboring state. That is the condition for the validity of the collcotive
Hamiltonian with a continuous kinetic-energy operator. The other extreme
is with v small compared to the barrier height, E,— E. In this case the con-
tinuum hopping model yields a wave function decaying exponentially with the
dependence

B,—E
(6.3) tp(z,.)~exp[—‘/ b'v n], n:A-%.

On the other hand, in this limit the wave function can be calculated by per-
turbation theory, which produces the expression

(6.4) P(2a) ~ (E—i—ﬁ) ;
=

We see that the collective wave function falls off much more rapidly than
does the actual wave funetion when v< E, — E. Therefore, we should be sus-
picious of the collective approach in the far subbarrier region; tunneling rates
might be larger than predicted from the collective inertias.

The results of the continuum hopping approximation for the spin barrier
model are shown in table II. We see that the treatment works surprisingly
well, considering the number of approximations made. Very far below the
barrier, the collective tunneling falls below the actual, as expected from the
above argument.

The next model we compare to is the cranked Hartree model. From table 1T
we see that this approximation is fair for energies close to the barrier top.
At low energies, the cranking model is quite poor. It is interesting to ask why
the model fails. My first thought was that the adiabatic inertia is at fault.
But, in fact, the inertia in eq. (5.12) is the correct inertia for particles moving
along the z-axis. The trouble seems to be rather that the constrained Har-
tree approximation does not produce the correct path for the system to move
along. We saw in fig. 5 that the path is far from smooth. To examine this
point further ARVE repeated the constrained Hartree caleulation using a dif-
ferent constraining field. He found that, if the constraining field is chosen as
o, instead of #, the path becomes smooth—a semiecirele in fact. The inertia
then is nearly the same as in eq. (5.6), and the predicted splittings are much
closer to the exact values.

The last technique I want to mention is the imaginary time-dependent
mean-field approximation. One ean derive a formula for the energy split-
ting between the nearly degenerate states that has an identical appearance
to eq. (6.1) [15]. However, the interpretation of the prefactor (dn/dE)-! is
different. The formula is only meant to be applied for the ground-state tun-
neling, and o is the collective frequeney of small-amplitude oscillations. This
frequency is 1 in the spin barrier Hamiltonian. When the equations of the
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imaginary mean-field theory are solved, it is found that the path of the tun-
neling is very similar to the path taken by the constrained Hartree theory,
with the spin constraint rather than the spatial constraint. There are some
slight differences, the most interesting being that the 4 component of the gpin
develops an imaginary expectation value. The result of the theory for ground-
state tunneling is shown in the last column of table II. The method is scen
to work remarkably well. Unfortunately, as presently formulated, it is only
applicable to ground-state mixing.

6'3. A physical application. — In this subsection I will consider the phys-
ical problem of exotic radioactivity, and apply the pairing model to calen-
late the radioactive-decay rates. Exotic radioactivity is the emission of light
nuclei such as carbon and neon nuclei from heavy parents. This phenomenon
was first observed in 1984 [16], in the decay of ***Ra. This nuclens normally
decays by emitting an alpha-particle, but a small branch (10-%) was observed
for decay by emission of a C nucleus. Exotic radioactivity is intermediate
between the extremes of alpha-decay and spontancous fission, which are both
well known and have well-developed theories. The theory for alpha-decay is
based on calculating a formation probability of an alpha eluster at the nu-
clear surface, and then calculating the penetration of the alpha-particle through
the potential barrier of the daughter nucleus. The formation probability is
caleulated microscopically, and typically involves the ground and nearby con-
figurations. By contrast, in the spontanens-fission problem the barrier only
exists in the many-particle shape space, and a major change in the configu-
ration is necessary to pass through the barrier. Up to now the cranked BCS
approximation has mainly been applied [12] to spontaneous fission, but the
uncertainties in the potential prevent reliable calculations in any approxima-
tion.

In exotic radioactivity, there is motion below the nucleus-nucleus Coulomb
barrier as well as below a shape barrier within the parent nucleus. The the-
oretical analysis [17] proceeds as follows. We first caleculate the penetration
of the external barrier, starting from a configuration of two touching daugh-
ter nuclei. The predicted decay rate is compared with the actual decay rate
to get an empirical formation factor, P. These are shown in table III. Our main
object is to ealeulate the formation factors. To do this we need the potential
as well ag the inertia. The potential depends on details of shell physies and
would be quite involved to calculate in detail. However, we know the energy
of the ground state, and from heavy-ion scattering potentials we can make a
reasonable estimate of the energy of the touching nuclei. Our potential model
is to connect these points with a quadratic function of the collective coordi-
nate. The potential-energy function is shown in fig. 7. The inertia will be
treated by the pair hopping model. We found in sect. 5 that the matrix ele-
ments connecting adjacent states are of the order of 2.5 MeV, and the num-
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Tasre IIL. — Exotic radioactivity.
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Decay log P empirical log P theory
21Ry UC wi— T8 — 6.9
22 Ry M( — 7.7 — T4
28R 14 — 8.9 — 7.2
24Rg 140 — 7.1 — 79
226Ra UC — 7.6 — 9.0
231Dy MNe —=J4.8 — 15.7
232[] 24Ne —13.5 —15.2
23] 2Ne — 15.8 — 164
1A m 8] <—17.6 —17.3

60

r(ftm)

Fig. 7. ~ Combined barrier for exotic radioactivity. The dots indicate Hartree con-
figurations that are connected by the residual interaction. At the point where the
shape is deformed to the final daughter configuration, the barrier is the usual Coulomb
barrier, modified by a short-range nuclear potential.

ber of states between the ground and the touching configuration is of the
order of the number of particles in the light daughter nucleus. The eontinuum
hopping Hamiltonian is just the harmonic oscillator, and the amplitude at the
touching configuration depends on the physical quantities as

(6.5)

e 1]
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where v is the hopping matrix element, » is the number of configurations be-
tween the ground and double-sphere configuration, and V, is the difference
in Hartree energies at these two extremes. In determining the potential, we
found that the height of the potential is roughly proportional to the size of
the daughter nucleus. Thus the dependence of {6.5) on the number of nu-
cleons in the daughter comes out to be exponential, which roughly agrees
with the empirical dependence, For the actual ealculation, we have dropped
the continuum limit and actually diagonalized the finite-dimensional hop-
ping Hamiltonian. The results for the formation factor are shown in table ITL.
We see rather good agreement, showing the importance of pairing in producing
large-amplitude fluctuations in the ground-state shapes. The comparison of
experimental and theoretical decay rates is shown in fig, 8.
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Fig. 8. — Comparison of theory and experiment for exotic radioactivity: e experi-
ment, a theory. Abscissa shows mass of parent nucleus, and ordinate is the dceay
rate. The experimental references are: H. RosE and G. JonEs: Nature (London), 307,
245 (1984); D. ALEXANDROV, A.F. BELiATsKY, Y. A. GLunov, E. Y. NixoLsky, B. V.
Novarsky, A. A. OcrosLiN and D. N, SreEraNov: Pis'ma Z. Eksp. Teor. Fiz., 40, 152
(1984); JETD Lett., 40, 909 (1984); S. GarLes, E. Hourani, M. Hussovois, J.D.
ScHAPIRA, L. Stae and M. VERGNES: Phys. Rev. Lett., 53, 759 (1984); P. B. PRICE,
J.D. BrEVENSON, J.D. Barwick and H. L. RavN: Phys. Rev. Lett., 54, 297 (1985);
W. Kurscnera, I. Aumap, 8.G. Armaro III, A.M. Prieopmax, J.E. GIEDLER,
W. HENNING, T. Isurr, M. Pavy and K. E. Renm: Phys. Rev. O, 32, 2036 (1985);
M. Pavur, I. Aumap and W. KuTSCHERA: Phys. Rev. O, 34, 1980 (1986); S. W. BARWICK,
P.B. Price and J.D. STEVENSON: Phys. Rev. €, 31, 1984 (1985); A. SANDULESCT,
Y. 8. ZayiarNiy, I. A. LesepEv, B. F. M1AsoEDpov, S. P. TRETYSKOVA and D. HASEGAN:
JINE Rapid Commun., 5, 5 (1984); 8. P. TRETYAROVA et al.: JINR Rapid Commun.,
13, 3 (1985).



COLLECTIVE MOTION IN FERMI DROPLETS 73

7. — From collective to random motion.

I want to conclude my lectures touching on a topic that has many open
questions, namely what happens to collective motion at finite excitation en-
ergy. Many degrees of freedom become available, and the motion can be dis-
sipative, possibly deseribable with a diffusion cquation. In discussing the
physics here, it is common to postulate a Hamiltonian that separates into
collective and noncollective coordinates, together with some coupling between
them. From the point of view of Hartree theory it is not evident that one
can make this separation, and I rather approach the subject by asking for
the equation of motion of those degrecs of freedom, such as the shape mul-
tipole moments, that exhibit collective behavior under limiting conditions. At
low excitation, partieularly below configurational energy barriers, we had no
difficulty reducing the Hamiltonian to a tridiagonal which implies collective
motion if the matrix elements are reasonably smooth. At higher excitation
this truncation to tridiagonal form is no longer possible; the large number
of open degrees of freedom allow motion along any particular direction to
dissipate,

Let us sce how this works for the pair hopping model. As before we label
the states by the number of particles in the ascending orbits, », and by «, an
index to further specify the state. Also, we will restrict the state we consider
to those lying within an energy interval AE of some definite energy. The
nonzero matrix clements of the Hamiltonian are given by

{(n, alHin, a) =Fu, Ey< B, <By AE,
(7.1) <n + 1, “:H'n, ﬂ> = ?‘aﬂ('n) .

Instead of a tridiagonal matrix, we have a band matrix with the dimension
of the off-diagonal band given by the number of states in the interval AE.

The first observation to be made is that the off-diagonal matrix elements
are very small on the scale of the colleetive pairing matrix elements, In the
limiting situation of a Hamiltonian with all single-particle energies equal, the
collective state takes all of the strength of the residual interaction and it van-
ishes in the noncollective states. However, in the realistic situation with an
unbounded spectrum of single-particle energics there will be interaction ma-
trix elements on the order of g for particular states. The number of states
that have these matrix elements depends on the level density and the interval
AE. Roughly, the number of states connected to a given state is

dn , _
(70) 7}=EEAE,

v
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where the level density is that of doubly occupied pair states. Suppose we
truncate the space to only include these states that are coupled with matrix
elements of the order of g. It is reasonable to suppose that, for any two
states included, there is a unique chain of intermediate states connecting
them. A Hamiltonian with this structure is known as the Bethe lattice.

In the case at hand, the energy interval over which states are strongly
mixed will have the order of magnitude g. Numerically, a rough formula for
g is
(7.3) g = 25/A MeV .

Using the level density formula, eq. (5.33), we find that the number of states
connected is

o

MeV g
&

| =

=W

(7.4) n

D

kS

The fact that this is less than 1 indicates that the Hamiltonian should not
mix strongly, and that states should tend to be localized in configuration space.
This is contrary to the elementary facts of nuclear physics that the proper-
ties of the nucleus above 5 MeV excitation are described by statistical phys-
ics—the compound-nucleus model—which requires the strong mixing of all
states energetically accessible.

It is also contrary to the findings of a detailed shell model study [18].
Here the single-particle energies and residual interaction were taken from fits
to the detailed spectroscopy of light nuclei (4 = 18 to 38). We examined
the eigenfunctions at very high excitation and found that they were as ex-
pected in statistical physies. Namely, the amplitudes of the different config-
urations in the eigenfunctions are distributed according to a Gaussian fune-
tion. Obviously, the nonpairing part of the interaction is erncial for the phys-
ies at the higher excitation. We have left out the residual interaction between
neutrons and protons, and this is certainly important. What is lacking is a
transparent treatment of that interaction as with the pairing.

When the excitation energy is raised much higher, of the order of a hundred
MeV, one passes from the domain of complete statistical physics to a domain
where partial equilibration of different degrees of freedom is observed. The
thermalization of the single-particle motion takes place more quickly than
the equilibration in the shape degrees of freedom. This is observed by the
behavior of heavy-ion reactions, which bring a large amount of energy to
the coumpound system. The system can fission, but it is found to emit
more ncutrons before doing so than would be possible if the shape degree of
freedom were equilibrated. The dynamics of this process has been deseribed
phenomenologically [19] based on Kramers [20] treatment, which uses a frie-
tional force in the collective coordinate. What is needed is a microscopic
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basis for this picture, with the dissipation and inertias derived from the phys-
ical Hamiltonian, consisting of mean fields and residual interactions.

* % ¥

The author acknowledges valuable discussions with R. BroGiza, J. NEGELE,
P. Arve and U. MosEL. The work on the spin pairing Hamiltonian was done
in collaboration with J. NEGELE, P, ARVE and G. Puppvu, R. BROGLIA and
B. BARRANCO collaborated on the exotic radioactivity study. The work was
supported by the National Science Foundation under grant 85-19653.

REFERENCES

[11 D. VaurneriN and D. BriNk: Phys. Rev. O, 5, 626 (1972).

[2] G. Bacuerer, D. HaMaNN and M. ScHLUTER: Phys. Rev. B, 26, 4199 (1982).

[3] N. Iwamoro, E. KrorscHECK and D, PINES: Phys. Rev. B, 29, 3936 (1984).

[4] J. HoprreLp: Phys. Rev. B, 2, 973 (1970).

[56] G. BeErtscin and W. Exarpr: Phys. Rev. B, 32, 7659 (1985).

[6] M. Bousterii, E. Fiser, J. Nix and J. NortoN: Phys. Rev. C, 5, 1050 (1972).

[7]1 P. Ring and P. Scuuck: The Nuclear Many-Body Problem (Springer-Verlag,
Berlin, 1980), p. 428.

[8] T. Arve, G. Berrscr, J. NEGELE and G. Pupbu: Phys. Rer. O, 36, 2018 (1987).

[9) II. LaerkiN, N. Mesnxov and A. GLick: Nucl. Phys., 62, 188 (1965).

[10] 8. CoremaN: Phys. Rev. D, 15, 2929 (1977).

[11] 8. Levir, J. NEGELE and Z. Parvier: Phys. Rev. C, 22, 1979 (1980).

[12] M. BraAck, J. DAMGAARD, A. JENSEN, II. PavuLr, V. StruTINSKY and C. Y. WonG:
Rev. Mod. Phys., 44, 320 (1972).

[13] A. Bour and B. MorrersoN: Nuclear Siructure, Vol. II (W. A. Benjamin,
New York, N. Y., 1975), eq. (6-591).

{14] L. LaxDAU and E, LirsHr1z: Quantum Mechanics, third cdifion (Pergamon Press,
London, 1977), p. 183.

[15) J. NEGELE: Rev. Mod. Phys., 54, 947 (1982).

[16] H.J. Rose and G.A. JoNES: Nature (London), 307, 245 (1984).

[17] F. BArraxco, R. Broeria and G. BERTSCH: Phys. Rev. Letl., 60, 507 (1988).

[18] B. A. BrRowN and G. BerrtscH: Phys. Lett. B, 148, 5 (1984).

[19] P. Granes, S. ITassaxt, H. WEIDENMULLER, A. GAVRON, J. Nix and A. SIERK:
Phys. Rev. O, 34, 209 (1986).

[20] H.A. KraMERS: Physica (Ulreckt), 7, 284 (1940).



