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where N and Z are the neutron and proton numbers and Eb is the binding
energy of the nucleus. The proton pairing gaps are defined in a similar way.
With the above definition, the gaps are positive for normal pairing. The
neutron pairing gaps are shown as a function of neutron number in Fig. 1.
The data for this plot was obtained from nuclear binding energies given in
the 2003 mass table.1 The upper panel shows the gaps centered on odd N .
Typically, the odd-N nuclei are less bound than the average of their even-N
neighbors by about 1 MeV. However, one sees that there can be about a
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Fig. 1. Upper panels: odd-N pairing gaps. Lower panels: even-N pairing gaps.
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factor of two scatter around the average value at a given N . Note that there
are two exceptional cases with negative ∆(3) for odd neutrons, at N = 23
and N = 31. I will come back them later. One can also see a systematic
trend in the gap values as a function of N , namely the gaps get smaller
in heavier nuclei. I will also come back to this behaviour in the theory
discussion. Another feature of the odd-N gap systematics is the occurance
of dips at particular values of N . In fact the dips occur adjacent to the
well-known magic numbers N = 28, 50, 82 and 126. In addition there is a
dip adjacent to N = 14, which corresponds to n = 2 in the magic number
sequence 1

3 (n + 1)(n2 + 2n + 6).
The systematics of the even-N gaps shown in the lower panel is similar

with respect to the following: average values, the fluctuations at each N ,
and the smooth trend downward with increasing N . However, the magic
number anomolies are now very striking spikes that occur exactly at the
magic numbers. Also, the average values in lighter nuclei appear to be
larger for the even-N gaps than for the odd-N . I will also come back to
this feature in the theory section.

The corresponding systematics of proton gaps is shown in Fig. 2. The
same qualitative features are present here as well, but the magic number
effects are less pronounced. I do not know of any explanation of this differ-
ence between neutron and proton pairing.

The table below gives some fits to the pairing gap systematics. Shown
are the fitted values of the gap parameterizations and the rms errors of the
fits, in units of MeV. The simplest model is a constant gap, ∆(3) = C, shown
on the line labeled C. One sees that a typical gap size is 1 MeV, and typical
fluctuations about that are smaller by a factor of 3. Beyond that, there are
differences between protons and neutrons and between the odd and the
even gaps. The even gaps are somewhat larger and have somewhat larger
fluctuations, which is to be expected in view of the shell effects exhibited
in Fig. 1. The odd proton gap is smaller than the odd neutron gaps which
might be expected from the repulsive Coulomb contribution to the pairing
interaction. There is also a mean-field contribution of the Coulomb that
has opposite signs for even and odd protons. Indeed the even proton gaps
are actually larger than their neutron counterparts.

For the next lines in the table, I come back to the broad trend in Fig. 1, a
systematic decrease in gaps with increasing mass number. It is conventional
to describe this with a fractional power dependence, ∆(3) = c/A1/2. This
decreases the rms errors somewhat, but there is no theoretical basis for the
fractional power of A. In the last line I show the result of a two-parameter
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Fig. 2. Upper panels: odd-Z pairing gaps. Lower panels: even-Z pairing gaps.

fit to the functional form ∆(3) = c1/A + c2. This functional form is more
justified by theoretical considerations, as will be discussed in the theory
section below.

1.2. Basic spectral properties

The other strong signatures of pairing are in excitation spectra. In the
simple BCS theory, the lowest excited states in an even system requires
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∆(3) protons protons neutrons neutrons
o/e odd even odd even

data set 418 407 443 442
C 0.96 ± 0.28 1.64 ± 0.46 1.04 ± 0.31 1.32 ± 0.42

c/A1/2 12/A1/2 ± 0.25 12/A1/2 ± 0.28
c1/A + c2 24/A + 0.82 ± 0.27 41/A + 0.94 ± 0.31

breaking two pairs giving an excitation energy

Eex ≈ 2∆BCS. (3)

On the other hand, in the odd particle number system, the quasiparticle
level density diverges at the Fermi energy. This contrasting behavior is
very obvious in the nuclear spectrum. As an example, the isotope chain
at proton magic number Z = 50 (the element Sn) has been a favorite
for exhibiting and studying pairing effects. Figure 3 shows the low-lying
spectra of odd-N members of the chain. One can see that there are several
levels within one MeV of the ground state. The spins and parities of the
levels (not shown) correspond very well with the single-particle orbitals near
the neutron Fermi level. However, the spectrum is very compressed with
respect to orbital energies calculated with a shell model potential well. In
contrast, the even members of the chain have no excited states at all within
the excitation energy range displayed in the Figure.
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Fig. 3. Energy levels of odd-N Sn isotopes

Let us look now look at the global systematics for excitations in the
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even-even nuclei. The estimate in Eq. (3) is too naive because there can
be collective excitations within the gap, as is well-known from early days
of BCS theory.3 For example, there are longitudinal sound modes in an
uncharged superfluid fermionic liquid. These have a phonon spectrum al-
lowing frequencies within the quasiparticle gap. One might expect that
such modes would be absent in finite systems when the size of the system
is small compared to the coherence length of the pairing field. In fact the
situation for nuclear excitations is much more complicated. However, just
for presenting the systematics, we use the right-hand side of Eq. (3) to scale
the excitation energies, taking the ratio E2/2∆, where E2 is the excitation
energy and ∆ is the smaller of ∆(3)

eZ and ∆(3)
eN .

The scaled excitation energies of the first excited states in even-even
are shown in Fig. 4. With only a few exceptions these states have angular
momentum and parity quantum numbers Jπ = 2+ and can be considered
to be collective quadrupolar excitations of the ground state. All of the
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Fig. 4. Energy gap in the excitation spectrum of even-even nuclei, scaled to 2∆(3). See
text for details.

ratios are smaller than one, with most in the range 0.1-0.5. The very small
excitations in the mass ranges A = 160 − 180 and 220 − 250 correpond to
nuclei with static quadrupole deformations.

The physics underlying these excitations is the softness of a typical nu-
cleus with respect to quadrupolar deformations. On a qualitative level, the
collectivity is similar to the phonon collectivity in the infinite Fermi gas. A
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quantitative measure of the collectivity is the sum-rule fraction contained
in the excitation, using the energy-weighted sum rule for some density op-
erator. For the phonon case, the sum rule fraction approaches 100% when
the frequency of the collective mode is small compared to the gap.3 The
collectivity in the nuclear quadrupole excitations is quite different. The
sum rule fraction carried by the lowest 2+ excitation is more or less con-
stant over the entire range of nuclear masses, but it only about 10% of the
total (for isoscalar quadrupole transitions. This is known as the Grodzins
systematics.4,5 The observed distribution of sum rule fractions is plotted
as a histogram in Fig. 5.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

 N
um

be
r o

f n
uc

le
i 

 Sum rule fraction   

Fig. 5. Sum rule fraction for the first excited 2+ state in even-even nuclei. See text for
details.

Turning to odd-A spectra, some systematics related to the level density
are shown in Fig. 6. The average excitation energy of the first excited state
is plotted for each odd mass number A, averaging over even values of Z.
For comparison, the dashed line is the expected spacing in the Fermi gas
formula for the single-particle level density,

dns

dE
= V

mkF

2π2
≈ A

100
MeV. (4)

The subscript s on Ns indicates that only one spin projection is counted,
and kF is the Fermi momentum. V is the volume of the nucleus, which is
(roughly) proportional to the number of nucleons A. One can see from the
Figure that a typical spacing is a factor of 10 smaller than that given by
the Fermi gas formula. Clearly interaction effects are at work to increase
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the level density near the ground state.
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Fig. 6. Average energy of the first excited state in odd-A nuclei. The dashed line is the
Fermi gas estimate, Eq. (4).

2. Theory

Mean-field theory has made enormous strides in nuclear physics; the self-
consistent mean field theory based on the Hartree-Fock-Bogoliubov approx-
imation and using semi-phenomenological energy functionals is now the tool
of choice for the global description of nuclear structure. It is not my inten-
tion to review this subject since it is well covered elsewhere in this volume.

Neverless, there are number of aspects of nuclear pairing that can be
can rather easily understood using only the more qualitative aspects of
pairing theory. Besides the pairing gaps and the effect on level densities,
there are important consequences for two-nucleon transfer reactions and on
dynamic properties such as radioactive decay modes. This section presents
an overview of some of these aspects.

2.1. Mean-field considerations

BCS pairing is not the only source of odd-even staggering in binding en-
ergies. As is well-known in the physics of finite electronic systems, the
Kramers degeneracy of single-particle orbitals gives rise to an odd-even ef-
fect. In a fixed potential well, the pair-wise filling of the orbitals makes
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to a contribution to ∆(3)
e that varies with system size as the single parti-

cle level spacing, ∆(3)
e ∼ A−1. In addition, the diagonal matrix elements

of the two-body interaction in the Hartree-Fock orbitals also contribute to
the odd-even staggering, both in ∆(3)

o and in ∆(3)
e .6 In the nuclear context,

the volume occupied by the orbitals is (approximately) proportional to the
mass number A, so this interaction contribution also varies as A−1.

The last line of the Table shows a fit to the neutron pairing gaps in-
cluding an A−1 term in the parameterization. It does almost as well as the
phenomenological A1/2 form. Note also that the coefficient of A−1 is larger
for the even gaps than the odd ones. This is just what is to be expected
from the contribution of the two-fold degenerate orbital energies.

Another mean field effect can be interpreted by Eq. (5,6) below, exhibit-
ing the dependence of the pairing gap on the single-particle level densities.
In general, level densities at the Fermi level are higher in spherical nuclei
than in deformed nuclei because of the spherical shell degeneracy. Thus,
one expects larger pairing gaps in spherical nuclei than in deformed. Even
more dramatic is the shell quenching seen in the odd-N gaps in Fig. 1. The
Fermi level in the spherical nuclei showing quenched gaps turns out to be
in the p1/2 or s1/2 shell, which have low degeneracy. Thus, the occurance
of the shell quenching is only partly due to the adjacent magic number.

2.2. Strength of the pairing interaction

The BCS theory gives the following formula for the gap parameter,7

∆BCS = (Emax − Emin) exp(−1/g) (5)

where

g = −G
dns

dE
. (6)

Here the prefactor of the exponential is the window of single-particle en-
ergies for orbitals participating in the pairing and G is the strength of
the pairing interaction. Eq. (6) defines the dimensionless quantity g that
characterizes the strength of the pairing condensate.

In present-day theory, the qualitative formula Eq. (5) is superceded by
detailed calculations of the orbitals and the pairing interaction, based on
Hartree-Fock (HF) mean-field theory or Hartree-Fock-Bogoliubov (HFB)
theory. This permits the treatment of the interaction by a two-nucleon
potential and replacing of a generic level density by computed single-particle
level spectra. However, there are significant uncertainties about both these
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aspects, and the pairing interaction is often parameterized in a simple way.
As an example, I show results of a global study of pairing systematics
that used the Skyrme energy functional for the mean field and a contact
interaction for the pairing.8 The odd-N pairing gaps were calculated for
two strengths of the pairing interaction, giving average gaps shown as the
filled circles in Fig. 7. In the HFB calculations, the energy window was
taken to be Emax − Emin = 100 MeV. Using this value in Eq. 5, the
calculated average gap at V0/V sd

0 = 1 is reproduced for g = 0.20. Noting
that g depending linearly on the pairing strength, Eq. 5 gives the dashed
line as a function of V0. One sees that there is a very strong dependence of
the gap on the pairing strength which is reproduced by the simple theory
of Eq. 5. It is interesting to note also that Ref. [9]9 also estimated g as
g ≈ 0.2 using the meager data available at the time.
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2.2.1. Origin of the pairing interaction

It is no surprise that conditions for pairing are satisfied in nuclei. The
nuclear interaction between identical nucleons is strongly attractive in the
spin-zero channel, almost to the degree to form a two-neutron bound state.
While this explains the origin at a qualitative level, the many-body aspects
of the nuclear interaction make it difficult to derive a quantitative theory
starting from basic interactions. The progress one has made so far is re-
viewed in other chapters of this book, so I won’t go into detail here. But
just for perspective, I mention some of the major issues.

I first recall problems with the mean-field interaction to use at the
Hartree-Fock level. Most obviously, the effective interaction between nu-
cleons in the nuclear medium is strongly modified by the Pauli principle.
The Pauli principle suppresses correlations between nucleons and that in
turn make the effective interaction less attractive. Beyond that, it seems
unavoidable to introduce three-body interactions in a self-consistent mean-
field theory. These interactions have two origins. The first is the three-
nucleon interaction arising from sub-nucleon degrees of freedom. It has been
convincingly demonstrated that such interactions are needed to reproduce
binding energies of light nuclei and to calculated the bulk properties of nu-
clear matter. Besides this more fundamental three-body interaction, there
may be an induced interaction associated with the short-ranged correlations
and their suppression in the many-body environment. In the popular pa-
rameterization of the effective interaction for use in mean-field theory, the
three-body interaction energy has the same order of magitude as the two-
body interaction energy. It would thus seem to be a great oversimplication
to ignore the three-body effects in the pairing interaction.

The last issue is the role of the induced interaction associated with low-
frequency excitations. We have seen that the nucleus is rather soft to surface
deformations. the virtual excitation of these modes would contribute to the
pairing in exactly the same way that phonon provide an attractive pairing
interaction for the electrons in a superconductor. The size of the induced
interaction is estimated in Ref. [10];10 it may well have the same importance
as the two-particle interaction. Note that if low-frequency phonons were
dominant, the energy scale in Eq. (5) would be greatly reduced.

2.2.2. Spin-triplet pairing

The strong attraction between identical nucleons was the starting point for
the discussion of the pairing interaction in the previous section. In fact,
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the attraction is even stronger between neutrons and protons in the spin
S = 1 channel. Here the interaction gives rise to the deuteron bound state.
Nevertheless, all the pairing phenomena seen above are a result of S = 0
pairing between identical nucleons.

This connundrum is resolved in two ways. First of all, pairing is only
favored when all the particles can participate. The spin triplet interaction is
only strong in neutron-proton pairs, so it would be suppressed in nuclei with
a large imbalance between neutron and proton numbers. The other factor
working against spin-triplet pairing is the spin-orbit field of the nucleus. It
breaks the spin coupling of the pair wave function, but it is more effective
in the spin-triplet channel.11 In any case, an increase in nuclear binding
energies is seen along the N = Z line, called the “Wigner energy”.12

2.3. Dynamics

The dynamic properties of an extended fermionic system depend crucially
on the presence of a pairing condensate, changing it from a highly viscous
fluid to a superfluid. The effects in nuclei are not quite as dramatic as in
extended systems because the pairing coherence length in nuclei exceeds
the size of the nucleus. Nevertheless, the presence of a highly deformable
surface in nuclei requires that pairing be treated in a dynamical way.

2.3.1. Rotational inertia

 0

 20

 40

 60

 80

 100

 0  0.5  1  1.5  2  2.5  3  3.5  4

  N
um

be
r o

f n
uc

le
i

 R42   

Fig. 8. Distribution of nuclei with respect to deformation indicator R42



May 5, 2012 2:47 World Scientific Review Volume - 9in x 6in pairing.9

Nuclear pairing: basic phenomena revisited 13

The most clearly documented dynamic influence of pairing is its effect on
the moment of inertia of deformed nuclei. Without pairing, the rotational
spectrum of a deformed fermionic droplet is believed to follow the spectrum
of a rigid rotor,

EJ =
!2

2I J(J + 1). (7)

Here !J is the angular momentum and the moment of inertia I would be
close to the rigid value

I ≈ 2
3
Am〈r2〉 ≈ 2

5
A5/3mr2

0 . (8)

A derivation of this formula is given in the textbook by Bohr and Mot-
telson [13, pp. 77-78], who apply the cranking approximation to a many-
particle wave function in a (self-consistent) deformed harmonic oscillator
potential. If the pairing were strong enough to make the coherence length
small compared to the size of the system, the system would be a superfluid
having irrotational flow and a corresponding inertial dynamics. What is
somewhat surprising is that the weak pairing that is characteristic of nuclei
still has a strong effect on the inertia.

One can separate out the deformed nuclei from the others by making
use of the ratio excitation energies

R42 =
E4

E2
. (9)

It is a good indicator of the character of the nucleus and has the value
R42 = 10/3 for an axial rotor. A histogram of R42 for all the nuclei for
which the energies are known is shown in Fig. 8. There is a sharp peak
around the rotor value. The E2 excitation energies of the nuclei corre-
sponding to the peak are plotted in Fig. 9 as a function of A. Also plotted
(dashed line) is the predicted value assuming a rigid rotor, Eq. (8). The ex-
perimental energies are systematically higher by a factor ∼ 2, thus requiring
inertias about half the rigid values. Present-day self-consistent mean-field
theory is very successful in reproducing the experimental inertias, calculat-
ing them is what is called the self-consistent cranking approximation. As
an example, the lower panel of Fig. 9 shows the calculated 2+ energies
using the HFB theory with an interaction that includes pairing.14 The av-
erage energies are very well reproduced, and the rms errors in the energies
are only ±10%. While the theory works very well, it does not provide a
parametric understanding of the dependence of the inertia on the pairing
strength. Naively one might have expected that the effects would controlled
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Fig. 9. Excitation energy of the first 2+ state in deformed nuclei. The line shows the
prediction assuming a rigid rotor.

by the ratio of the size of the nuclei to the coherence length of the Cooper
pairs, which is a small number. We will also see in the next section another
dynamic property showing a large influence of pairing.

2.3.2. Large amplitude collective motion

Also of interest, particularly in the theory of fission, is the effect of pairing
on large-amplitude shape changes. Qualitatively, it is clear that pairing
promotes fluidity. The degree to which this happens can be examined in
one of the important observables of nuclear fission induced by low-energy
excitation, such as occurs in neutron capture. The observable is the in-
ternal energy of the fission fragments. With nonviscous fluid dynamics,
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Fig. 10. Potential energy curve for the decay 223Rn → 209Pb + 14C. The outside
potential is a combination of Coulomb and nuclear heavy-ion potentials. The dots show
the assumed Hartree-Fock states that connect the ground state 223Rn configuration to
the final-state cluster configuration.

the internal energy would be largely deformation energy. With more vis-
cous dynamics, there would be additional thermal energy. So far, one has
not been able to perform realistic enough calculations to compare theory
and experiment. But the computational tools for the time-dependent HFB
theory are now reaching the point where such a test can be made. (See
Chapter X in this book).

Spontaneous fission is a decay mode that requires the nucleus to tunnel
under a barrier as it is changing shape. This kind of under-the-barrier dy-
namics is extremely sensitive to the character of the system, whether it is
normal or superfluid. If the system is normal, the relevant configurations
under the barrier are close to Hartree-Fock with relatively small interac-
tion matrix elements mixing different configurations. On the other hand, if
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there is pairing condensate, the interaction between configurations can be
enhanced by a factor 2∆2/G2 [10, p. 159, Eq. (7.8)], where here G is a
typical interaction matrix element between neighboring mean-field config-
urations. Numerically, the pairing enhancement factor can be an order of
magnitude or more. One should also keep in mind that in tunneling, the
lifetime depends exponentially on the inertial parameters of the dynamics.
As an example, the nucleus 234U is observed to decay by many different
channels, ranging from alpha decay to spontaneous fission, and including
exotic modes such as emission of a Neon isotope. The observed lifetimes
of these decays range over 12 order of magnitude. Theory including the
enhancement factor is able to reproduce the lifetimes to within one or two
orders of magnitude [10, p. 163, Table 7.1]. Without the enhancement
factor, there would be no possibility to explain them.
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