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Nuclear vibrations

G. F. Bertsch

Michigan State University, East Lansing, Michigan 48824

Three types of nuclear vibrations have been observed in which a large fraction of the nucleons
participate. There is a satisfactory explanation for the vibrational frequencies but not for the damping

rates.

NUCLEL like more familiar mechanical systems, can undergo
simple vibratory motions. One mode of motion, in which pro-
tons move together in one direction while the neutrons simul-
taneously move in the opposite direction, has been known for 30
years. In the past decade, several new vibrational modes have
been discovered. Our theoretical understanding of the nuclear
motion has also considerably advanced. Although the most
refined descriptions of the motion require a quantum many-
body theory, the main features of the vibrations can be under-
stood using classical physics. The motion of an extended body is
described by a field of vectors which give the velocity of the
medium at each point. Figure 1 shows the velocity fields for
three types of vibration: monopole, dipole and quadrupole.
These three modes are exhibited by nuclei as so-called ‘giant
vibrations’, in which a large fraction of the nucleons participate
in the motion. In both the monopole and quadrupole modes, all
the nucleons move coherently in a direction which depends on
their position in the nucleus. In the dipole motion, as mentioned
above, protons and neutrons move in opposite directions.

a b : [4 d
MONOPOLE L:=0

DO

DIPOLE L=1

BOD ()

QUADRUPOLE L=2

Fig. 1 The cycle of oscillation for simple vibrations. The velocity

field at the moment when the nucleus passes through the equili-

brium shape is shown in a and c. The shape at maximum distortion

is shown in b and d. For the dipole, the neutrons and protons move

in opposite directions. For other modes, the neutrons move with
protons.
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Fig. 2 The giant dipole resonance in 208pp, as observed by the
photon reaction cross section (ref. 3, Fig. 32). The points are the
experimental data, and the curve is the lorentzian function.

Dipole vibration

The first nuclear vibration to be observed, the giant dipole, was
found in measurements of photon absorption. The reaction
cross-section is enhanced by resonance when the photon
frequency matches the vibrational frequency. The first indica-
tions of the giant dipole resonance were obtained before photon
beams with a broad energy range were available. Bothe and
Gentner in 1937 had a source of 14 MeV photons and they
measured the radioactivity produced in a variety of targets'. The
cross-sections varied considerably from target to target, indicat-
ing that there was a resonant absorption in some of the targets.
By the mid-1940s, electron accelerators became available which
produced bremsstrahlung photon beams of sufficient energy to
observe the resonance. The improved data® showed that the
absorption was concentrated in a resonance, the frequency of
which varied systematically with the size of the nucleus.

One problem with these measurements is that the brems-
strahlung beam is broadly distributed in energy, so that the
measurement for a particular energy required careful subtrac-
tion techniques. Currently, these experiments are done with
photons that are produced by annihilation of positron, and are
therefore monoenergetic. An example of the data now avail-
able® with this improved technique is shown in Fig. 2. The points
are experimental data, and the curve is the lorentzian dis-
tribution,
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This formula has three parameters: a maximum strength o, a
centre frequency E,,, and a damping width I', which are adjusted
to fit the data. For the heavier nuclei, the frequency depends on
nuclear mass number A roughly as #iw =80/A'*MeV. The
damping width is 4-5 MeV.

The spatial structure of the vibration, with protons moving
against neutrons, is inferred indirectly from the data. Photons at
the frequencies of interest have a long wavelength (~100 fm) on
the scale of nuclear dimensions R ~1.2 A"*~3-8 fm. With a
long wavelength, the force field is quite uniform and the photons
cannot excite other kinds of motion besides the uniform dis-
placement of protons against neutrons. Thus, as is the case with
optical photons interacting with atoms, all but a negligible
fraction of the cross-section is due to dipolar motion. It is useful
to compare the magnitude of the cross-section with a theoretical
limit known as a sum rule. The Thomas-Reiche-Kuhn sum rule
for the absorption is given by*

J‘” 2m%e’ NZ

A o(w)dw e A
where M is the mass of a nucleon, and N, Z are the neutron and
proton numbers. The dipole vibration will satisfy this sum rule
only if all the protons move coherently with a uniform trans-
lation. In the example shown in Fig. 2, the experimental absorp-
tion strength from the lorentzian fit is 3,000 MeV mb, which is
just the limit from the sum rule. Thus, the motion in the dipole
vibration seems to be completely coherent. This conclusion is
modified by the presence of charged mesons.’

Quadrupole and monopole vibrations

As mentioned above, wavelengths shorter than can be provided
by photons are needed to excite the monopole and quadrupole
vibrations. The quantum relationship between momentum and
wavelength, p=h/A, implies that modes with more complex
spatial structure can be excited only if enough momentum is
given to the nucleus at the same time. This condition can be met
by the inelastic scattering of massive projectiles. The first pub-
lished experiments exhibiting a new vibration were done in 1957
with inelastic proton scattering at 180 MeV (ref. 6). Figure 3
shows these data; a distinct bump is visible at 18 MeV excitation.
However, the significance of this bump was not realised until in
1971, when Bertrand and coworkers’ found the bump in their
own data taken at lower energies and concluded that it was the
quadrupole vibration of Fig. 1. Others also saw the vibration in
electron scattering®, and offered a quadrupole vibration as one
of the possible explanations.

The main evidence that the bump might be a quadrupole
vibration was the angular distribution of the scattering cross-
section. Each multipolarity has a characteristic shape to the
angular distribution, which can be calculated by the Schrodinger
equation for the projectile wavefunction. If the wavelength of
the projectile is short compared to the dimensions of the target,
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Fig. 3 Inelastic proton scattering spectrum for 180 MeV protons

on a Ca target (ref. 5, Fig. 2). The stippled bump is the quadrupole

vibration. The rise in cross-section towards zero excitation energy
is the elastic scattering.
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Fig. 4 Inelastic a-particle scattering on 997r, taken at three

different angles. a, G = 17.5°%; b, 01, =20.5°; ¢, Ojap =22.5°. The

giant quadrupole is prominent at 17.5° and 22.5° but is much
reduced at 20.5° (ref. 9).

the angular distribution peaks at an angle given roughly by
0 = L/AR, where L is the multipolarity of the excitation and R is
the nuclear radius. At larger angles, the cross-section is oscil-
latory, with interference from the projectile passing opposite
sides of the nucleus. Some recent data with angular dependence
is shown in Fig. 4°.

The reaction is induced by a particles scattering on the
nucleus °Zr. A prominent peak is seen at angles of 17.5° and
22.5°, but much reduced at 20.5°. This behaviour is only consis-
tent with the predicted angular distributions for quadrupole or
monopole vibrations. To decide between monopole and
quadrupole, one must either look at smaller angles, or argue on
the basis of the absolute strength of the peak.

As in photon absorption, sum rules can be used to analyse the
absolute strength. However, the strength of the interaction for
projectiles such as protons and « particles is not as well known a
priori as it is for electromagnetic probes. To avoid this problem,
the interaction between specific projectiles and target nucleons
is adjusted by fitting the elastic scattering data. The interaction
determined in this way describes inelastic transition quite well,
and for many cases can be checked independently by its elec-
tromagnetic properties'°.

Defining V as the potential field of the scattering projectile on
the target, the inelastic scattering sum rule reads

vy
2m
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where n, is the density of nucleons in the ground state and the
excited states are labelled by f. This sum rule is easily understood
in classical terms. The left-hand side is the average energy
given to the nucleus by the collision. On the right-hand
side, V V(r) is the impulse given to a target nucleon at position r.
Thus (VV(r))?/2m is the average kinetic energy given to a
nucleon at r, and the integral is the average total energy given to
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the nucleus. Since the integral involves only the ground state
density, it can be reliably computed and compared with the
actual strength of a given vibrational excitation. The peak in Fig.
4 has about 75% of the strength for a quadrupole vibration; if it
were monopole the sum rule would be exceeded.

By now the systematic behaviour of the quadrupole vibration
has been thoroughly studied''. The mean frequency varies with
mass number as w ~63/AY>MeV/A. The width varies from
8 MeV in light nuclei to 3 MeV in heavy nuclei, with dips at
magic nuclei.

In the past two years, experiments have been done at smaller
angles, where the monopole and quadrupole have different
behaviour. Inelastic scattering at 0° should favour the monopole
vibration. The physics behind this is shown in Fig. 5 which shows
a projectile wave enveloping a nucleus. The attractive inter-
action between the projectile and the target pulls the nucleus out
along the equatorial region. This outwards motion can be
resolved into a major monopole component and a minor
quadrupole component. All the wavelets from the projectile will
interfere coherently at 0° scattering angle. So, like the Poisson
spot seen in optical diffraction around spheres, the scattering
will show a pronounced peak at 0°.

The quantum calculations of the scattering support this
picture: Fig. 6 shows calculations comparing the angular dis-
tributions of monopole and quadrupole at the most forward
angles®. These calculations treat the excitation of the vibration
in the Born approximation, and use the solution of the
Schrédinger equation in an optical potential for the projectile
wavefunction. The sharp rise of the monpole near 0° is evident.

As the experiments have progressed to smaller angles with
shorter wavelength projectiles, evidence has accumulated for a
monopole vibration at a frequency slightly higher than the
quadrupole. Figure 7 shows recent data (D. Youngblood,
personal communication) for 0° inelastic @ scattering. The
centroid of the peak is at

w~80/A'? (MeV/hy

Fortuitously, this is the same frequency as the dipole mode. The
damping width of the vibration is about the same as for the
quadrupole.

Theory

Paralleling the experimental developments, there have been
considerable advances in the theory of the vibrations. The
general theory, derived from many-body quantum mechanics in
the 1950s, is known as RPA (random phase approximation).
This theory was originally applied to nuclei'*'* in models which
used an oversimplified description of the wavefunction. These
models were instructive in exhibiting qualitative trends for the
vibrational frequencies but they had severe deficiencies. The
sum rules were not satisfied. The interaction between particles
was unrealistic, and in many cases had to be adjusted to fit
observed vibrational properties. In the past decade it has
become possible to do the theory properly. The availability of

Fig. 5§ A projectile wave, depicted with the broad arrows,

envelops a nucleus and induces the transverse motion of the

nucleus, shown with the small arrows. This motion resolves into a
combination of monopole and quadrupole vibrations.
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Fig. 6 Angular distribution for inelastic a scattering on 208py,
(ref. 36). The solid line is the theoretical distribution for exciting a
quadrupole vibration E, =11.0 MeV; L =2, and the dashed line is
the theoretical distribution for the monopole E,=13.7 MeV; L=
0. Points are data extracted by fitting the peaks like those in Fig. 4.

medium-sized computers means that the description of the
wavefunction can be kept sufficiently general. In a configuration
representation, the number of configurations for a heavy
nucleus is typically several hundred. An example of an RPA
calculation of the photon absorption strength is shown in Fig.
8!, The other key to a quantitative theory is the use of the same
interaction hamiltonian to describe the vibrations as is used for
the Hartree-Fock ground state. The important property of the
interaction is that it contains a short range attraction which
diminishes as the density increases. A simple parameterisation
of the hamiltonian introduced by Skyrme has the form,

2

H=22£i‘+ Y v(no, pspy) 8(ri—ry)
i LM i<

where v is a polynomial function of density n,(r) and momentum
pi. Such a hamiltonian can be determined by fitting ground-state
sizes and binding energies'®. More fundamental theories of the
interaction, based on the free nucleon-nucleon potential, can be
reduced to the Skyrme form.'” With the zero-range interaction,
the Hartree~Fock ground states of nuclei are easily computed,
as is the RPA response. With the largest computers, it is feasible
to remove the restriction to zero-range interactions in the
hamiltonian, and the most sophisticated RPA calculations are
based on a more general parametrisation'®. Using a hamiltonian
consistent with ground state properties, the RPA gives an
excellent description of the vibrations without any adjusted
parameters'®. The sum rules are automatically satisfied. The
giant vibrations, with the exception of the monopole, are found
at the proper frequency. The frequencies of low vibrations are
generally reproduced to 10%. Figure 9 compares the theoreti-
cal®® and experimental® density fluctuation in a low-frequency
vibration of 2°®Pb. Note that the density fluctuation is strongest
at a radius ~7 fm, which is at the nuclear surface.

The RPA can be simplified to algebraic formulae when the
vibration exhausts the sum rule. These formulae are analogous
to the classical formula for a vibrational frequency « in terms of
a mass M and spring constant k, w?=k/M. Before the RPA
theory was known, classical models were proposed ad hoc. In the
case of the dipole vibration, the mass is simply the mass of the
protons and neutrons. The restoring force is due to the change in
potential energy when the protons and neutrons are displaced
with respect to each other. The dipole frequency was first
calculated along these lines by Migdal in 1944 (ref. 22; see also
refs 23. 24). The dipole motion in Fig. 1 physically separates
neutrons from protons in the surface region: Migdal modified
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Fig.7 Comparison of the « scattering at a, 0°; and b, 4°. The peak
is shifted upward in energy at 0°, due to the relative enhancement
of the monopole at the forward angle.

the velocity fields to keep the particles together at the surface.
The predicted frequency is then found to be

(4.31;5
“~\MR?

where b,=50 MeV is the symmetry energy of nuclear binding.
The reduction of RPA yields a formula that contains additional
factors arising from mesons and from a more accurate descrip-
tion of the velocity field?**®. These corrections tend to cancel,
and equation (1) is in excellent agreement with the empirical
vibration frequencies of the heavier nuclei.

Migdal®* and others®’ also tried to calculate the quadrupole
vibrational frequency, but in this case the classical ideas were
simply wrong. It was assumed that the surface tension of the
nuclear surface provided the restoring force to the spherical
shape. The general formula for liquid drop vibrations was
derived by Rayleigh, and is

)”2~80/A”3 (MeV/#) 1)

Wy [ed (1)

MR?®
where o is the surface tension. The formula can be evaluated
using the nuclear surface tension derived from binding energy
systematics. The predicted frequency is found to be ~2 MeV for
heavy nuclei, which is much too low?’. However, as mentioned
above, RPA calculations do predict the quadrupole vibration at
the correct frequency. In fact, on the basis of such calculations
Mottelson in the 1960s urged a search for the mode.

The reason why the classical calculation fails is that the main
element in the restoring force is neglected. There is a resistance
to shearing motion in any Fermi system caused by the complex
spatial structure of the many-Fermion wavefunction. It turns out
that the elastic shear modulus is proportional to the quantum
kinetic energy of the particles. The proper formula for the
vibrational frequency based on this restoring force is

L2 D)

M

Here (r?) is the mean square radius of the ground state, and (T)
is the average kinetic energy per particle in the nucleus. Note
that this formula, unlike the liquid drop formula, has the correct

A" dependence of frequency on mass number because (r~
A?7> When a simple estimate is made of the kinetic energy per

L(L—-1)(L+2)

2
w

@
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particle, for example, with the Fermi gas model or harmonic
oscillator model, the predicted frequency from equation (2)
agrees with the empirical model to better than 10%. As in the
case of the dipole, equation (2) is somewhat oversimplified, since
some of the subtler effects of the nuclear interactions are
neglected?®.

We now consider the theory of the most recently discovered
giant vibration, the monopole. The frequency of the monopole is
especially interesting because it is directly related to the
compressibility of nuclear matter. The compressibility is a
fundamental property of the medium, but up to now there has
been no way to measure it. There have been many calculations
of nuclear compressibility beginning in the early 1940s, before
the nuclear interaction was very well known. Techniques of
calculations have since become very sophisiticated, but we do
not yet have a satisfactory understanding of the equilibrium
density of nuclear matter”, More detailed properties of the
nuclear medium, such as its compressibility, are correspondingly
more difficult to calculate. However, the existing calculations
should serve as a guideline. Predicted values for the compres-
sibility are in the range

&E
k=V? Vi 2.5-5 (MeV fm™3)

with the higher number being more recent. The classical rela-
tionship between the radial vibration frequency and the
compressibility of a liquid drop is w? = 7%(k/MnoR?>). Applying
this formula to finding k& from the empirical w, the compres-
sibility of nuclear matter turns out to be k=3.5 MeV fm™>.
Having fixed the compressibility coefficient with the information
from the monopole, it will now be possible to make more
reliable calculations of other phenomena involving high-density
nuclear matter. This includes high-energy heavy-ion collisions
and the formation of neutron stars.

Damping

The damping of the nuclear vibrations is not well understood,
theoretically or experimentally. There are two possible
mechanisms for the damping. The vibration may disappear by
emitting particles, which could be called evaporation; or the
motion may mix with the more complex degrees of freedom in
the many body system, which is analogous to friction. This
complex state would eventually decay according to statistical
considerations, which generally emphasise low-energy neutron
emission. The measurement of decays of giant vibrations is a
very active area of research. Some published experiments in the
heavier nuclei claim that the decays are inconsistent with the
statistical picture®**!. On the theoretical side, the damping by
particle emission is found to be unimportant except in light
nuclei. In RPA, the damping rate due to nucleon emission can be

SDF

Fig.8 The ?hoton absorption strength of '°0 in the RPA theory

(solid line)l , compared with experiment (dashed line). The

resonance is split into five components by the shell structure, and
has a width due to the decay by nucleon emission.
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Fig.9 The transition charge density (37|p|0") for the lowest L =3

state in 2*Pb. The experimental density2 (hatched area) is

measured by a Fourier-Bessel transform of the electron scattering

form factor. The theoretical density'® is the result of an RPA

calculation (dashed line), using a large basis for the wavefunction
but a simple interaction.

calculated directly'***. The rate of emission of heavier particles,
such as a particles, is more difficult to calculate but is also
estimated to be small.

Nevertheless, the study of emitted particles has provided a
useful tool for studying the vibrations. By examining a particular
final transition, the emitted particle can be forced to carry away
the entire angular momentum of the vibration. If a coordinate
system is chosen in which there is no angular momentum about
the z axis, the angular distribution of the particle then follows a
Legendre function, N (8) = (P,(8))>.

Such a measurement was made for the giant quadrupole of
180, decaying by a-particle emission to the states in *2C (ref. 32).
The angular distribution for the ground ' tate transition, which
satisfies the above condition, is shown . Fig. 10. The data
exhibit a peak at 0° of the right width to be described by [P,(8)T*.
However, unlike the Legendre function, the data is not sym-
metric about 90°. This means there must be coherent mixtures of
angular momenta. The fact that the background interferes with
the decay of the vibration is not really unexpected. In the
classical limit nucleon emission can take place by the projectile’s
knocking out a nucleon in the direction of the momentum
transfer. The quantum description of this process requires
intereference from many angular momenta. It remains to be
seen what theory predicts about how much interference is
required.

The other form of damping is caused by mixing with more
complicated modes of motion. A simple example of this is the
behaviour of the dipole state in a deformed nucleus. A vibration
in an arbitrary direction resolves into vibrations along the
principal axes with different frequencies. This is seen in Fig. 11,
showing the dipole strength for an ellipsoidal nucleus.

The lineshape can be well described as the sum of two
lorentzian curves. The lower frequency and higher frequency
components correspond to the vibration along the major and
minor axes respectively. The difference in frequencies agrees
well with the R dependence in equation (1). Because there are
two minor axes, the upper peak is predicted to have twice the
strength which is found to be the case empirically. For the
quadrupole vibration, there are three distinct frequencies
instead of two, and the overall splitting is smaller because the
motion has components along both principal axes.
Consequently, for the quadrupole the deformation splitting is
much more difficult to see.

The major source of damping is mixing with the statistical
degrees of freedom of the many body system. In principle, this
could be calculated from the shell model representation of
nuclear wavefunctions, and several calculations along such lines
have been reported®***. However, these calculations are not
transparent, and it is more instructive to ask how the damping of
the vibrations compares with damping of other kinds of motion.
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Fig. 10 Angular distribution of decay a particles following exci-

tation of '°0 in the giant quadrupole region3 2 The 0° axis is along

the momentum transfer direction. The probability distribution

peaks in this direction, and also has a smaller peak in the opposite
direction. E,=17.9-19.2 MeV.

The simplest motion is that of a single nucleon across the
nucleus. This is described quantum mechanically with an optical
potential, and the finite lifetime of the nucleon 7 is related to the
imaginary part of the optical potential (W) by #/7=2(W).
Optical potentials can be inferred from elastic scattering of low
energy nucleons and from the capture of neutrons. The spread-
ing of the single-particle strength can also be seen directly in the
reactions in which a nucleon is transferred between the pro-
jectile and the target. These methods yield a damping width for
nucleons close to the particle emission threshold of about #/7 =
5 MeV.

A naive model of the vibrational damping can then be con-
structed, utilising the representation of the wavefunction in
terms of single-particle wavefunctions. The vibration is a
superposition of one particle above the Fermi level together
with a hole in the Fermi sea. Each of these should have a single
particle lifetime so the total damping width would be twice that,
hence #i/7=~10 MeV.

This estimate ignores a coherence in the vibrational motion:
the fact that all of the particles are moving together inhibits the
coupling to other degrees of freedom. This coherence is well-
known in other quantum systems. For example, in metals the
plasmon vibration might only be damped by 1eV while an
electron at the same energy has a damping many times larger. In
fact, the detailed calculations of nuclear vibrational damping do
show this quenching effect®.

Although classical ideas are relevant to the description of the
vibrational frequencies, they have not yet been helpful in dis-
cussions of damping. The classical concept for dissipation in
extended systems is viscosity, and attempts have been made to
apply this idea to the nuclear vibrations. Unfortunately, there is
no fundamental justification for viscosity; it is only valid when
particles have short mean free paths. In nuclei, the particles can
travel completely across the nucleus with a high probability. The
nuclear surface probably plays a more important part in the
damping than do collisions between particles in the interior. A
simple description of the damping in these circumstances is
needed not only for the understanding of nuclear vibrations, but
also for interpretation of data on heavy ion collisions.
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Fig. 11 The giant dipole resonance is '*°Gd, an ellipsoidal
nucleus (ref. 3, Fig. 28). The curve is a sum of two lorentzian
functions, the upper having twice the area of the lower.
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Prospects

What is the likelihood of discovering more vibrations? The
possibility of more complex motion always exists, and other
vibrations can be calculated in RPA. However, all the other
modes of particle displacement have a higher mean frequency.
The damping is predicted to be much larger, both within RPA
and due to the coupling to other degrees of freedom. Thus it is
unlikely that a coherent mode, containing most of the sum rule,

1. Bothe, W. & Gentner, W. Z. Phys. 106, 236 (1937); 112, 45 (1939).
2. Baldwin, G. & Klaiber, G. S. Phys. Rev. 73, 1156 (1948).

3. Berman, B. L. & Fultz, S. C. Rev. Mod. Phys. 47,713 (1975).

4. Panofsky & Phillips, Classical Electricity and Magnetism, 335 (Addison-Wesley, New York,

1955).

5. Levinger, J. S. & Bethe, H. A. Phys. Rev. 78, 115 (1950).

6. Tyren, H. & Maris, Th. A. J. Nucl. Phys. 4, 637 (1957).

7. Lewis, M. B. & Bertand, F. E. Nucl. Phys. A196, 337 (1972).

8. Pitthan, R. & Walcher, T. Phys. Lett. 36B, 563 (1971).

9. Youngblood, D. H. ef al. Phys. Rev. C13, 994 (1976).

10. Bernstein, A. M. Adv. Nuc. Phys. 3, 325 (1969).
11. Betrand, F. E. A. Rev. Nucl, Sci. 26,457 (1976).

12. Baranger, M. Phys. Rev. 120, 957 (1960).

13. Brown, G., Evans, J. & Thouless, D. Nucl. Phys. 24, 1 (1961).

14. Shlomo, S. & Bertsch, G. Nucl. Phys. A243, 507 (1975).

15. Krewald, S. er al. Phys. Rev. Lett. 33, 1386 (1974).

16. Vautherin, D. & Brink, D. Phys. Rev. CS, 626 (1972).

17. Negele, I. & Vautherin, D. Phys. Rev. C5, 1472 (1972).

Nature Vol. 280 23 August 1979

will be resolved as a distinct peak. In the inelastic scattering
experiments, the spectrum contains a-smooth background
together with the presently known peaks, as may be seen in Figs
3 and 4. Part of this background at least must be due to highly
damped vibrations of greater complexity. Without some specific
measurable characteristic, however, it is not possible to identify
them as such.
This research was supported by NSF grant PHY 7620097.

18. Blaizot, J. P. & Gogny, D. Nucl. Phys. A284, 429 (1977).

19. Bertsch, G. & Tsai, S. F. Phys. Rep. 18C, 127 (1975).

20. Speth, J., Werner, E. & Wild, W. Phys. Rep. 33C, 127 (1977).

21, Rothhaas, H. et al. Phys. Lett. 51B, 23 (1974).

22. Migdal, A. J. Phys. (Moscow) 8, 331 (1944).

23. Goldhaber, M. & Teller, E. Phys. Rev. 74, 1046 (1948).

24. Steinwedel, H. & Jensen, J. A. D. Z. Naturforsch. 5A, 413 (1950).

25. Myers, W. & Swiatecki, W. Phys. Rev. C15, 2032 (1977).

26. Bertsch, G. & Stricker, K. Phys. Rev. C13, 1312 (1976).

27. Bohr, A. & Mottelson, B. Kgl. Dan. Vid. Seisk. Med. 27, No. 16 (1953).
28. Golin, M. & Zamick, L. Nucl. Phys. A249, 320 (1979).

29. Day, B. D. Rev. Mod. Phys. 50, 495 (1978).

30. Wolynec, E., Dodge, W. R. & Hayward, E. Phys. Rev. Lett. 42,27 (1979).
31. van der Plicht, J. et al. Phys. Rev. Lett. 42,1121 (1979).

32, Knopfle, K. T. et al. Phys. Lett. 74B, 191 (1978).

33. Danos, M. & Greiner, W. Phys. Rev. B138, 876 (1965).

34. Soloviev, V. G., Stoyanov, C. & Vdovin, A. Nuc. Phys. A288, 376 (1977).
35. Bertsch, G. et al. Phys. Letr. 80B, 161 (1979).

36. Youngblood, D. H. et al. Phys. Rev. Let. 39, 1188 (1977).

articles

A 30,000-yr isotope climatic record

from Antarctic ice

C. Lorius*, L. Merlivatt, J. Jouzeli & M. Pourchet™

* Laboratoire de Glaciologie du CNRS, 2, rue Trés Cloitres 38031 Grenoble Cedex, France
+ Laboratoire de Géoisotopie de I'Eau, DRA Saclay, B.P. 2, 91190 Gif/Yvette, France

Simple glaciological conditions at Dome C in east Antarc-
tica have made possible a more detailed and accurate
interpretation of an ice core to 950 m depth spanning some
32,000 yr than that obtained from earlier ice cores. Dated
events in comparable marine core has enabled the reduction
of accumulation rate during the last ice age to be estimated.
Climatic events recorded in the ice core indicate that the
warmest Holocene period in the Southern Hemisphere
occurred at an earlier date than in the Northern Hemis-
phere.

ALTHOUGH the stable isotopic composition (**0/'°0, D/H) of
polar ice sheets can provide a continuous record of past climatic
conditions, the interpretation of the isotope profiles in terms of
climatic temperature changes over a time scale ranging back to
the last ice age is complicated by several factors including: (1)
the determination of the time scale; (2) the influence of the
elevation at which the snow was deposited and of ice sheet
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stability; (3) the establishment of a transfer function from
isotopic 8 ratio to temperature in past conditions. Despite these
limitations the study of ice cores has already provided very
useful palaeoclimatic data'™®. Similar limitations occur in the
interpretation of other indirect sources of climatic data.

As isotopic records from areas near an ice divide are simpler
to interpret, thermal core drilling to 906 m depth was carried out
at Dome C (74°39'S; 124° 10’ E; elevation: 3,240 m, mean
annual temperature: —53.5°C, Fig. 1) during the 1977-78
Antarctic field season as part of the International Antarctic
Glaciological project®.

The isotope profile

The core recovery was about 98%. Sampling was carried out in
the field by cutting a continuous slice from along the length of
cleaned ice core. The '20/'¢O ratios were measured with a fully
automatic double mass spectrometer with an accuracy of 0.15%
in the & scale relative to the V. SMOW. The results averaged for
samples of about 4 m length are plotted in Fig. 2 with depths
expressed in metres of ice equivalent to take account of the
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