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EXCITATIONS IN CLUSTERS

G.F. Bertsch

1 Introduction

There are two points of view on cluster physics, which are implicit when
one asks the questions:

Do the properties of clusters bridge the physics of atoms to the physics
of bulk systems?

Or do clusters form a world of their own, with unique properties seen
neither in atoms nor in macroscopic systems?

A positive answer to the first question would give a strong motivation to
study clusters in order to develop tools for studying large systems. Because
clusters are finite with discrete electronic excitations, their observed prop-
erties might presumably be used more effectively to develop better theory.
On the other hand, a positive answer to the second question is motivation
to study clusters in their own right. In fact, depending on the properties
under study; both questions have affirmative answers.

One of the unique aspects of clusters is their magic numbers, which will
be discussed in detail in the lectures of Martin and Brack. A sampler of
abundance spectra showing the magic number phenomena is displayed in
Figure 1.

In the top panel are shown the abundances of sodium clusters in the
pioneering 1984 experiment of Knight et al. [1]. The numbers 8, 20, 40, are
clearly favored. These numbers can be associated with the group SU(3).
This is a fancy way of saying that the experiment showed special stability for
the closed shells in a three-dimensional harmonic oscillator potential, which
happens t0 cairy the symmetry of the group SU(3). The most important
point is that spherical shell closures of delocalized electrons convey stability
to the system and determines structure. In nuclear physics the discovery of
shells of delocalized particles opened the door to more powerful theoretical
tools to understand nuclear structure, and the same has happened in metal
cluster physics.

© EDP Sciences, Springer-Verlag 2001
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Fig: ‘1. Abundsiion spectra in cluster beams. The data are from the following
sodium [1]; xenon [3]

references: carbon [4]§

Magic numbers of very different origin come from the geometric arrange-
ments of atoms in a cluster. Tf.le Mackey icosahedra (2] are the prime ex.-
ample of geometric packing in finite systems. Let us try to pack hard balls
into a compact shape- Starting with one at the center, one finds up to
twelve can be positiOﬂed around the central ball and touching it. However
the packing is imperfect in that the outer layer of balls is not close packodg
and contains spaces between at least some of the balls. The space can b(,:
arranged symmetrica]ly putting the outer balls at the vertices of an icosa-
hedron. Each face of the icosahedron is defined by a triangle of balls. The
Mackey construction adds layers by building a larger triangle on each face
These icosahedral num.bers were seen first in a cluster beam experiment on.
Xe clusters [3], shown 11 the lower panel of Figure 1. The favored icosahe-
dral numbers are 13, 59, 147, ... However, one sees in this experiment thalt



G.F. Bertsch: Excitations in Clusters 61

| | 1 |
0 0.05 0.1 0.15 0.2 0.25
Photon Energy (eV)

Fig. 2. Schematic infrared absorption spectrum of Ceo, from reference [5].

the icosahedral numbers hardly stand out from others equally prominent.
Martin’s lectures will explain how in the basic icosahedral framework other
numbers can arise as well.

The middle panel in Figure 1 shows carbon abundances with the famous
peak at N = 60 from the fullerene molecule Cgo. In this case, the experi-
mentalists observed that 60 was magic, and deduced from that the structure
should be icosahedral, with the carbon atoms positioned like the vertices on
a soccer ball. In some respect, Cgo is an ideal molecule to bridge the atom
and the bulk: it is the largest assemblage of atoms possible in which all the
atoms are equivalent. It also has the largest possible number of point group
symmetries (120). The history of the synthesis of Cgp is also interesting
from another point of view. The original discoverers, Kroto, Smalley et al.,
were chemists by background but made use of physical techniques—cluster
beam apparatus and time-of-flight mass measurement-to first observe the
molecule [4]. But the practical bulk synthesis was devised by physicists,
Kratschmer and Huffman [5], using extraction techniques taken directly
from the chemistry laboratory. Thus one sees in the study of clusters a
blurring of the distinctions between physics and chemistry. Once macro-
scopic quantities became available, it was possible to measure properties
that would be extremely difficult otherwise. An example from the original
paper is the infrared absorption spectrum, shown in Figure 2. Due the high
symmetry of the molecule, there are only four optical active transitions,
although the number of vibrations is much larger, 3N — 6 = 174. We will
come back to this spectrum in Section 4.
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Fig. 3. Surface plasmon in alkali metals. Left, K, from reference [7]; middle
and right Naj, ,; from reference [8].

There are many properties of clusters that can be measured in clus-
ter beam experiments. The ionization potential can be measured rather
directly in photoionization experiments from the threshold energy. The
binding energy of an atom to the cluster is measured indirectly through the
evaporation rate and its temperature dependence, using statistical theory.
A recent example of the application of the theory to determine the atom
separation energy in Na clusters may be found in [6].

The response of clusters to external electromagnetic fields is a large
subject, and will be the main topic of my lectures. An external electric field
€ induces a dipole moment D; the linear polarizability « is the coefficient of
proportionality in the expansion D = a€ + ... This is commonly measured
by deflection of a beam in an inhomogeneous electric field. One can also
study magnetic clusters by their deflection in an inhomogeneous magnetic
field, the classic Stern-Gerlach experiment. Magnetic properties of clusters
will be a topic in Pastor’s lecture.

The photon absorption cross section is also measured over a frequency
range starting from optical frequencies to the very far ultraviolet (~10 eV
photon energy). In simple metal clusters one sees a coherence hetween the
electrons in that there is strong peak in the response involving all of the
valence electrons. This is the surface plasmon mode, and I shall have quite a
bit to say about it. Figure 3 shows some typical optical absorption spectra
of metal clusters. In a spherical cluster, the surface plasmon is sharply
defined, as may be seen in the first panel, showing potassium spectra [7].
The plasmon is split in nonspherical clusters, as shown in the second panel.
This geometric sensitivity of the plasmon may be understood at many levels,
from classical to quantum mechanical. This feature of cluster behavior is
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also reminiscent of a similar phenomenon in nuelear physics. I will show how
an analytic rough description be derived looking at the short-time behavior
of the wave function.

The main aim in these lectures is to give the student some familiarity
with the basic tools the theorist has at his disposal to study these cluster
properties, particularly electronic excitations. In this respect one should
emphasize the importance of simple models. For describing large numbers
of particles, the use of models that focus on a few degrees of freedom is un-
avoidable. Even if one’s efforts are in large-scale ab initio numerical calcu-
lations, the models are extremely useful to interpret the numbers and check
the numerics. My own cluster research, published in the papers [9-31], has
evolved from applications of simple ideas taken from nuclear physics to nu-
merically intensive computations of ab initio theory. While I will show some
of these ab nitio results that are won by intensive computer computation,
I think one of their main values is to validate simpler models.

Before discussing electronic excitations, I will go through statistical reac-
tion theory, which is indispensable to interpret cluster formation and evap-
oration, and many electron transfer processes.

2 Statistical reaction theory

An important tool for understanding dynamic processes in clusters, as well
as for extracting information about their energetics, is statistical reaction
theory. Like statistical mechanics, the theory is well-known in principle.
But much of the literature is confusing, and I think it is worthwhile to as-
semble all the relevant formulas and their derivations. The generic problem
is to calculate the emission rate of an excited state of a bound system. The
derivation of the statistical rate formula is based on detailed balance, which
is one of the fundamental principles of statistical mechanics. If we divide
the system’s phase space up into microstates, the equilibrium state has all
the microstates equally occupied. Looking at the detailed dynamics, the
probability flux out of each microstate must equal the probability flux in.
The inward flux is relatively straightforward to compute or to character-
ize empirically. Then making the equality gives us a way to calculate the
emission rate. Note that the emission rate does not depend on the system
being in equilibrium with its surroundings. It only depends on there being
equilibrium among the internal microstates of the system.

We sketch a system, Figure 4, with one degree of freedom singled out,
say the position of the particle that will be emitted. All the other degrees
of freedom will be treated by imagining the Hamiltonian to be diagonalized,
and so represent them by states. In the scattering problem these states with
a fixed radial coordinate for the particle are called channels. We now put the
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Fig. 4. Separation of internal and external states for the derivation of the statis-
tical decay formula.

system in a box to make it easier to count states for the detailed balance
argument. The thick curve in Figure 4 shows the energy of the lowest
channel as a function of distance. The states of the system, separated into
internal and external states, are shown with light lines. These are not the
cigenstates of the system, because we have not coupled the internal to the
external states. Let us now count the states and invoke detailed balance.
For the external states, let us give the box a radius R. We will count the
number of states in an energy interval AFE, and we need the density of
external states with respect to energy.

This is calculated as follows. For a large box, we can take the normalized
asymptotic wave function to have the form!

¢ = \/%Sin{knr),

!This ignores the scattering phase shift and the angular-momentum-dependent phase
of the asymptotic wave function.
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where n labels the different states. The density of the external levels dE/dn
is given by?

dn  Rm

dE — n’rk

Let us now find the inward current in an energy interval AFE. The asymp-
totic external wave function has both incoming and outgoing components,
with the incoming component given by

26—1’.‘;1'
¢ = VR 2

The current associated with this component is

hk 2

()= iR

When the particle reaches the cluster, it may be reflected immediately or
it may be transmitted into the interior. Define the transmission coefficient
T., with 0 < T, < 1. Then the flux that goes into the target is the current
of each state times the number of states times the occupation probability
of each state. Calling the last quantity fo, the inward flux is

Tl
I aE

1e
JoTel AE = fy ; AE.

2nh

By detailed balance we can equate this to the outward flux, assuming that
the internal states have the same occupation probability fy. Let’s define an
average decay rate of an inner state, W. The total flux out is given by

foWpeALE

where pp is the density of internal states of the system. Equating the last
two expressions gives the statistical formula for the decay rate W,

s zc Te

W =
2whpg

(2.1)
Note that the derivation does not require the system to be in equilibrium
with its surrounding, only that there is an internal equilibriun among the
internal states.

To use the formula, one needs to know the transmission coeflicients as
well as the level density of the internal states. In many applications the

2This may be derived from the boundary condition that the wave function vanish at
the surface of the box!, k, R = nm, taking the asymptotic energy, E = ﬁgkﬁ/Z‘m.
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channel potential energy has a barrier, and one can make the approximation
that the transmission coeflicients are zero below the barrier and unity above.
Then there is a correspondence between the channels and the level density of
the daughter system. With these assumptions, one obtains the well-known
transition state theory, called RRKM theory in chemistry. In principle the
channels are discrete, and at energies close to the barrier energy the decay
rate might show a step-like behavior. In fact, this was predicted in nuclear
physics in the original fission theory of Bohr and Wheeler, which made use of
equation (2.1). However, the discreteness of channels was never clearly seen
in nuclear fission, because the quantum mechanical transmission coefficients
increase smoothly as the channel opens. But in my last lecture I will show
you an example from carbon structures that perfectly shows the individual
channels.

The statistical decay formula also requires the density of states of the
decaying system, pp. Under ideal conditions when the internal states do
not overlap, (W < (fipg) 1), the internal states can be explicitly counted.
This is the case in nuclear physics for energies close to the neutron emis-
sion barrier. For atomic clusters and molecules larger than several atoms,
the vibrational density of states is huge compared to the electronic, and
there is no hope to see individual internal states in the regime of electronic
excitations.

2.1 Cluster evaporation rates

We now apply the formula to evaporation of atoms from a cluster. We
consider a cluster having excitation energy £*, emitting an atom of kinetic
energy Fx and leaving the daughter cluster at excitation energy E;. The
energies are related by

E*=FE;+Ex+D (2.2)

where D is the binding energy of the atom to the cluster in the ground state.
In general, the atom can be emitted in many angular momentum states, and
each one will have its own channel. However, in the end the incoming flux is
determined by the inverse reaction cross section. To derive a simple formula,
let us assume that the atoms are spinless and that the specific state of the
cluster play no role in the absorption cross section. Then the transmissions
cocfficients depend only on the orbital angular momentum [ and the energy
of the atom, and the reaction cross section is given by

o= :_2 > @+ )Ti(Ex)
]
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where h%k?/2m = Ek. Exactly the same sum will appear when one makes
an approximate sum over channels in equation (2.1). The channel are distin-
guished by the internal state of the daughter cluster (including its angular
momentum L), the orbital angular momentum of the evaporated atom l
and the total angular momentum of the system J. For a given initial state
the total angular momentum is fixed, so the channel sum will involve sums
over | and L. The conditions of evaporation are generally such that the
maximum { is much less than the typical J. Then the channel sum over L
can be enumerating with the familiar rules of angular momentum coupling,
L=J-1,J—1+1,...J+1, giving 2l + 1 terms altogether. If the particle
has spin with g states, the spin coupling increases the number of channels
to g(20 + 1). Then assuming that the internal states of the daughter are
independent of L, the formula (2.1) can be expressed

w9 22+ 1)T
Qﬂﬁpg

(2.3)

Here the i sum is over internal states of the daughter for some typical angular
momentum L. The transmission coefficient depends on the i only because
the energy of the evaporated particle depends on how much energy is left in
the daughter. We now replace the sum over | by the cross section formula,
to get

W = q Zi kiZGr(EK) = gm E-i EKJr(EK) )
2m2hpr 7r2h3p5

(2.4)

Here the evaporated particles momentum k and kinetic energy Ex depend
on i through equation (2.2). The differential decay rate with respect to Ex
is easily obtained by the replacing the sum over internal states by their level
density, d¥;/dE — pg. The formula is,

dw' gmpy 1 (E* — D — Eg)Ego(Ek)
dEx 203 pn (E*)

(2.5)

Here we have changed notation on the level density p to distinguish the
parent density py and the daughter density py_1 by a subscript. This
formula was first derived by Weisskopf to describe neutron decay of excited
nuclei [32].

Turther reduction of this rate formula requires some specific information
about the level densities. One simple limit is to assume that the excitation
energy and level densities are high enough that the level density of the
daughter system behaves exponentially over the range of the interest in the
decay. This permits a parameterization with a temperature: pn(E* — D —
Ex) =~ pn(E*—D)exp(—E /T), and equation (2.5) can be integrated with
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respect to Fg. If we further assume that the cross section is constant, the
integral is elementary and the total transition rate becomes?®

mT2pN,1(E* — D)o, _

W=
w2h° py (E*)

We now specialize to level densities associated with vibrations. If the vi-
brations are harmonic, the level density can be expressed completely ana-
Iytically by Kassel’s formula [33],

Es—l ‘
(s = D (huw))

Here s is the number of vibrational degrees of freedom, with s = 3N — 6 for
triatomic and larger clusters. The sum goes over the vibrations j with their
frequencies w;. Since the formula will be derived in Wales’ lectures, I need
not discuss its validity here.

Again assuming that the reaction cross section is constant, we can inte-
grate over the density of states of the daughter system to get the following
formula

pN(E) = (2.6)

w3 E* — D)s—2
W = EE(S = l)mﬂl-'(mg_ll— . (27)
Here w? is the ratio of the products of vibrational frequencies for parent and
daughter. The decay rate in essentially this form was originally derived by
Engelking [34]. Note that the quantum of action A has dropped out of the
formula. Once one takes Kassel’s density of states, the remaining physics is
completely classical.

For midsize and larger clusters there are many vibrational degrees of
freedom, s > 1. It also usually the case that the evaporation is observed in a
regime with £* > D. Then the conditions for an exponential approximation
are satisfied, and we can write (E* — D)2 /(E*)*? a exp(—D/T) where
T is defined T' = E* /(s — 2). Note that the relation between T' and E* is
exactly what one obtains classically for the relation between temperature
and energy in a system of s — 2 oscillators. The decay rate formula then
becomes

wmao,
W= —ﬂ?T—'e-D/T. (2.8)
The most important feature of this formula is the extreme dependence of
the evaporation rate on D. Let us take the example of sodium cluster of

3We have also assumed that the spin of the particle can be neglected (g = 1).
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size N ~ 100. The binding energy of an atom is about D =~ 1 eV, and we
will approximation w by the Debye frequency, hw = 0.01 eV. Let us also
assume that 7" in the range of values near room temperature, T'= 0.025 eV,
to evaluate the prefactor in the formula. Although equation (2.8) does not
have h in it, it is convenient to express frequencies as equivalent energies.
Two more needed dimensional constants: h = 0.658 eV-fs is needed to get
a decay rate in units of s~!, The mass is conveniently expressed in terms
of h?/my = 4.15 x 1073 ¢V-A2. The inverse cross section is estimated as
o, = mR? & 300 A, that is, assuming that all atoms that hit the cluster will
stick. Putting the numbers together, we find

o (0.01)*(23)(300) e~ DIT o 19166 D/T
72(0.00415)(0.025) '

Cluster beams have flight times of the order of tens to hundreds of mi-
croseconds. Thus a measurable evaporation rate requires the exponential
suppression factor to be in the range exp(—D/T) ~ 10~ 1, i.e. D =~ 25T
We can see from this that a 10% change in D will change W by an order of
magnitude. For 1" = 0.03 eV, the excitation energy is £* = 9 eV, and the
evaporation leaves the daughter clusters at the energy £ = 8 eV. Thus, the
chain of evaporations has very different rates for each stage, and the multi-
ple evaporation spectrum will be very much peaked around the number that
corresponds to a lifetime equal to the travel time in the cluster beam. As
you will see, Haberland will use this property to accurately measure energy
differences between clusters at different temperatures.

2.2  Electron emission

The statistical theory of electron emission is no different in principle, but
there can be important differences in the details. Because of the Coulomb
interaction, the geometric area may no longer be a good approximation to
the reaction cross section.

Haberland will discuss in his lectures measurements of the electron emis-
sion in sodium clusters. He will show a very interesting result that the emis-
sion takes place when the electrons have equilibrated among themselves but
before the equilibration with the vibrations has taken place.

Under these conditions, the state densities in equation (2.5) should be
evaluated for the electron degrees of freedom only. The Fermion character
of the electrons has two consequences. The two spin degrees of freedom
gives rise to an additional factor of 2 in the formula, because there are twice
as many external electron states when detailed balance is applied. Also,
the level densities are quite different for Fermions. If we assume that the
particles behave as a free Fermi gas, the level density has an exponential
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dependence on excitation energy given by Bethe’s formula,
PE ~ €Xp (2 7r2NE/2EF) ,

where Fp is the Fermi energy of the electron gas. It is interesting to note
that in the Fermion case the quantum effects remain visible in the final
formula as the factors of k no longer cancel.

A final difference is that the inverse cross section cannot be considered
constant, due to the long-range Coulomb interaction between the electron
and the (charged) daughter system. The semiclassical formula for the cross
section when there is complete absorption at a radius R in the present of a
potential field V' is

ob =TR? (1—@) :

Note that this diverges at low energy when the Coulomb potential is attrac-
tive. The divergence is only apparent, because the cross section is multiplied
by E in the rate formula. This theory of charged particle emission is well
known in nuclear theory; it was first applied to clusters in reference [35].

2.3 Radiative cooling

The last process I will discuss is the statistical emission of a photon. To
observe radiative cooling in isolated clusters, one needs longer residence
Limes thaw is provided by the usual molecular beam apparatus. Observa-
tions have been reported using ion traps [36] and storage rings [37]. In these
experiments, the photons were not observed directly, but rather the effect
of the cooling on other processes was seen. Also, it is interesting to note
that cluster radiation was proposed as a way to achieve more efficient ther-
mal illumination [38]. We will see that in the spectrum infrared emission
is suppressed compared to black body radiation. In the derivation of the
photon decay rate, only the transmission factor in the dipole channel (I = 1)
is significant, but the formula looks very similar to equation (2.3). Photons
have two polarization states, making g = 2. Also the energy of the photon
Epn and the reduced wave number k are related by k = Ey,),/hc, so the final
result for The result for the radiation spectrum is

dW _ iEph2o_ pE(E* - Eph) .
dEy, 72 he  pp(E*)

(2.9)

This formula is also well-known in nuclear physics where radiative decays
of hot nuclei have been studied for some time. In the cluster context, the
formula was first derived in reference [39)].
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3 Optical properties of small particles

In the remainder of my lectures I will mainly discuss the theory of electronic
excitations, but before getting into the equations to be solved, I will list for
future reference a number of useful formulas for describing the electromag-
netic properties of small particles. Here by small, I mean the wavelength
is much larger than the size of the particle, A > R. Then the clectric
dipole field dominates the interaction, and the optical response can be de-
scribed with the dynamic polarizability a(w). For a spherical system, the
polarizability is defined

62
(.rzz(w)=ﬁZ|(0|z|i)]2( ! + . ) (3.1)

w—imtw; wtintw;

with ¢ labeling excited states. For nonspherical systems, one can define
polarizabilities for the principle axes and construct a polarizability tensor.
The photon absorption cross section is related to the polarizability by

4w
oap = —Ilma(w). (3:2)
An important property of the dipole response is the Thomas Reiche Kuhn
sum rule. It may be derived from the operator commutator relation,
[z, [H,z]/2 = h? /2m,. In terms of dipole matrix elements between ground
and excited states 4, the sum rule reads

a2 h.z 1
> 1(0lzl8)[* huws = 5N, (33)
- 2M.e
12
where N is the number of electrons. Conventionally one defines a dimen-

sionless oscillator strength f; for a fransition as

2m ; )
Ji= i |(0|Z|'3)|2hwi-

Then the sum rule is simply >, fi = N. In terms of the dynamic polariz-
ability, an oscillator strength function can be defined

2mew
whe?

St(w) Ima(w) (3.4)

and the f-sum is

/dthf(w) = i (3.5)
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Another handy formula is the expression for f in terms of the integral of
the cross section over the photon energy,

Ml
f = / oadE. (3.6)
A practical formula used by chemists takes for the integrand the molar
extinetion coeflicient rather that the cross section; a derivation may be
found in my book [18].

3.1 Connections to the bulk

With clusters viewed as a bridge between the atom and the bulk, it is in-
teresting to see how the electronic response connects to the infinite medium
response. There the response is characterized by the dielectric function e,
which gives the relation between external and internal electric fields at a
perpendicular interface: ¢ = &Eu/Eexi- There are two connections one can
make to the finite system polarizability . The first is the dielectric func-
tion for an cubic crystal composed of polarizable particles, given by the
Clausius-Mossotti relation,

1+ 8mang/3 1+ 2a/rd
 1-drang/3  1—afrd

(3.7)

where ng is the number density of the particles in the crystal. For con-
venience in the second equation the formula is expressed in terms of the
Wigner-Seitz racdius ro. T'his is the radius ol a sphere whose volume corre-
sponds to the volume per particle in the medium, d7rd /3 = 1/ny. A similar
length ry is in common use to specify the electron density n.. This is de-
fined 4713 /3 = 1/ne and is quoted in atomic units (lengths in Bohr radii
(0.529 A); energies in Hartrees (27.2 ¢V).

The other connection is the polarizability of a cluster considered as a
dielectric sphere. It is a textbook exercise in electrostatics to show that the
polarizability of a dielectric sphere of radius R is given by

e—1
e+2

=R? (3.8)
We shall call this the Mie theory of the polarizability. One more handy
formula is the dielectric function of a simple conductor. In the Drude model
(independent electrons subject to a frictional force depending linearly on
velocity) the dielectric function is

2
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where v is the frictional rate constant and wy, is the plasmon frequency,

o  Ame?n,

w (3.10)

P Me

In atomic units the formula is simply w2 = 3/r3.
Let us try this in equation (3.8). After some trivial algebra one finds

wg/B

y(w) = R® .
(\:(w) —w2+iwfy+wg/3

(3.11)

There are two obvious things to notice about this formula. The first is
that the zero-frequency limit gives @ = R*®, which is just the formula for
the polarizability of a conducting sphere. The second is that there is a
resonance where the denominator vanishes, near the frequency

Wp | &2

This is the surface plasmon, and we shall call equation (3.12) the surface
plasmon formula. In atomic units it is simply ws = re 343,

3.2 Linear response and short-time behavior

The photon absorption cross section and the polarizability are properties
that only require the dynamics in weak external fields, the linear response
region. This allows a variety of methods to be applied to solve the time-
dependent equations, and each method has its adherents. There are two
very popular methods that I will not describe in any detail in these written
notes, but they need to be mentioned for completeness. In these methods
one makes a matrix representation of the problem and either inverts or
diagonalizes the matrix. Both methods start by Fourier transforming the
Kohn-Sham equations in time, to obtain equations in the frequency domain.
In the linear response region, different frequency are not coupled together
except that the amplitude for a given frequency is coupled to that of its
negative.

The direct solution of the time-dependent equations is possible, and
1 have pursued this method with my collaborator, Kazuhiro Yabana, using
an algorithm originally developed for nuclear physics [40]. With the time-
dependent equations, one can apply an external field of arbitrary shape and
strength. If the field is weak, the response of a given frequency is obtained
from the amplitude of that Fourier component in the excitation field. It
is very convenient to take the perturbing field to be a é-function in time,
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because it has all Fourier components with equal weight. Let us first see
how this works with the one-particle Schrédinger equation,

V2 O¢
Hd): '——.?—T;‘FU(T)Q')-ZE
Here U(r) is a fixed internal potential the system. In this section I have
dropped factors of i to simplify the formulas. T start with the ground state
o exp(—iLpt) and add to the Hamiltonian an impulsive external potential,
Vext(r,t) = Vo(r)d(t). The differential equation then requires that there be
a corresponding jump in the wave function at £ = 0,

#(04) = (1 —iVy) do.

The subsequent evolution can be found by solving the equation as a power
series in time. The form of the power series is

d(t) = (1 —iVp — [H, Vot + i[H, [H, V|Jt*/2 + ...) poe™F0t.  (3.13)

The low-order terms in this expansion have direct physical interpretation
in classical Newtonian mechanics. The initial perturbation of the wave
function gives it the same momentum density that one would calculate from
an impulsive force field ﬁ’cht acting on a density distribution of classical
particles. This may be seen from the expansion of the expression for the
momentum density to linear order in the external field,

V-V
21

p(r) = ¢*(04) ( ) $(04) = —VValgo|*. (3.14)

Here the right hand side is just the momentum density associated with the
force field VViy and the ordinary density 1o = |¢o|2. Next let us look
at how the density varies in time. To first order in ¢ the time-dependent
density is given by

* V- -
n(i) = |q'5(t)§2 = l(f)0|2 — 2¢0[H, V()](f)()t‘f i Ng — *TE?L[)VV(]t T

Taking the derivative of this expression to get dn/dt, and comparing with
equation (3.14), one can recognize the equation of continuity

% =V jr)/m=-V-]

where j(r) = p(r)/m is the particle current. The next term in the power
series will give the initial change in momentum due to the internal forces
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in the system. It is rather complicated to work out the double commutator
for the next term in general (but see [9]), so I will specialize to the very
importance case of the dipole field, V) = Az. Here X is a small parameter
to remind ourselves that the response is to be calculated to linear order in
the external field. The relevant commutators are

A O

[H, %]=*E£ (3.15)
AU
(H,[H, V] = Ptk

Inserting in equation (3.13), the wave function evolves as

At 3 aU —ilgt A ('bo ——’LB(]f,
cf)(t)—(lz)\z+22 sz)d)(;e + 8,t e

The generalization of this expansion to a many-particle Hamiltonian with in-
teractions between the particles is very similar. Let us consider

2 -y :
the Hamiltonian H = 37, p*/2m + >, U(ri) + 30, v(ri — ;) and call
the ground state wave function Wy. Then the power series expansion of the
wave function is

)\ 8 {72) =
2 U i Eot
W(t) = (1 — @At E z + Uy E Bi; ) g Eot

ov %o,

2 o~ tbiot 4
m z
'l

Note that the last term in parentheses only contains the one-particle po-
tential /. The particle-particle interaction does not contribute because the
relevant commutator vanishes,

a d
[’U('Ii— ),azaﬁ“a—zj =0

I next write down the power series expansion of the dipole moment and
the total momentum. With a little bit of algebra, these quantities can be
expressed as follows

D(t) = (U(#)[2] () = )\%t +o (3.16)

and

| &
(B = (U()|ps| V(1)) = % (N - /dsrn(v')%tz 4 ) L 37
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It is easy to connect this time-dependent analysis with the dynamic polar-
izability function considered at the begin of the section. Formally, we can
expand the time-dependent wave function following the impulsive dipole
field in the eigenfunctions,

V() =Wy — i)\z (0] 2]i)e it

The dipole moment and the total momentum then have the following time
dependencies,

D(t) = (W(b)]2|W(t)) = )\ZZ‘(O}z\i)’gsinwit (3.18)

(U|p2|W) = A 2(0|p.|i)(i| 2|0) coswt. (3.19)

In a power series expansion, the first term of the dipole moment is
A Z 2w; (0|]3)2¢.
I

Comparing with equation (3.16), we see that they are equal if the TRK sum
rule is satisfied. Thus the sum rule is just a statement about the short-time
behavior of the wave function in an impulsive external field.

3.3 Collective excitations

It is possible to derive simple formulas for collective excitations just using
the dynamics that was derived in the last section. From equation (3.19) we
see that the power series expansion of the momentum has the first terms

(W]p:|¥) = A (N - tgzw;%(mzu)(ﬂpzm) + ) .

We can use this to estimate the frequency of the excitation, if the system
is very collective. That assumption would allow us to replace the sum over
states in the above equation by a single state with an excitation energy
I will call we. Comparing with equation (3.17), we find

1 9*U
2 el .
wi = N fd rn(r) 92 (3.20)

This formula can be used to make simple estimates of collective frequencies.
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Let us first consider the spherical jellinm model. The background charge
density is ng©(R — r) and the corresponding potential is

U= _4—”‘*;?”]33, P> R
dwe?ngR? (3 72
U:"—3_(§_W)’ s B

If the electrons are contained within the jellium sphere, the integral in
equation (3.20) reduces to fﬂn d*rn(r) = N and we immediately get the
surface plasmon formula, equation (3.12). We thus see a condition of va-
lidity of the formula: the electrons must be contained within the jellium
sphere radius. In fact the electron wave functions will spill out, decreasing
the integral and thereby the frequency of the collective oscillation.

A simple extension of the model allows us to derive a formula for the
splitting of the surface plasmon frequency in deformed systems. Let us
suppose we have a small quadrupolar deformation with the radius vector
depending on direction according to

R(0) = R(1 + Pa(cos@))

where P is the Legendre function and 3 is a dimensionless deformation
parameter. Taking (3 small, the charge density distortion of the jellinm
background is approximately

dn = BRngPa(cos 0)d(r — R).

The Coulomb potential associated with this charge density be obtained from
the nmltipole expansion. The result for r < R is

dmeZngr?
§U = —f3————P,(cos 8).
5

The mode in the 2 or y direction will now have a different frequency from
the z mode because the respective second derivatives of the field U + 6U

differ. Working this out, we get to leading order in 3

4 Calculating the electron wave function

From a computational point of view, it is extremely difficult to calculate
many-particle wave functions for more than a few particles, because the
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Fig. 5. Hierarchy of quantum many-body theories.

number of functional values needed in a numerical representation increases
exponentially with the number of independent variables. On the other
hand, the calculation of single-electron wave functions in an arbitrary three-
dimensional potential is within the scope of desktop computers. Fortunately,
there is a theory that is quite accurate although it only involves the solving
the one-particle Schroedinger equation.

The most sophisticated version of the theory is called the time-dependent
density functional theory or TDDFT for short. I will show a number of
calculations done with TDDFT, but before that it is useful to review the
static theory. This is the density functional theory (DFT). For systems
larger than a few atoms, it has revolutionized the computation of electronic
properties, as indeed was recognized in the 1998 Nobel Prize. While it has
been spectacularly successful in calculating static properties, it does have
well-known deficiencies in treating excitations. It is therefore important to
understand the approximations and their validity.

The kinds of theory one can make for electronic structure are shown
in Figure 5. In my view, Hartree-Fock theory is fundamental to all proven
approaches. The theory is very simple to describe: minimize the expectation
of the Hamiltonian in the space of Slater determinants. You have seen the
basic objects many times before:

U= AH $i(ri), (dilo;) = by (4.1)

= (W|H|\I’> = Z[ds?iz%tl— + '/d:s Tﬂe('f')MDn(T')

& 3, 131 Me(r)ne(r')
+ G [yl Z<"’i’¢ Foa|en) @
where ne(r) = 3.|¢i(r)|* is the electron density. The variation

SE/d¢;(r) = 0 gives the Hartree-Fock equations. The single-particle energy
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Table 1. Atomization energies.

Lio CoHo 20 simple molecules
(mean absolute error)
Experimental 1.04 eV 17.6eV -
Theoretical errors:

Hartree Fock —0.94 —4.9 3.1
LDA —0.05 2.4 1.4
GGA -0.2 0.4 0.35

7 —0.05 —-0.2 0.13

in the Hartree Fock equations arises as a Lagrange multiplier to preserve
the norm of the wave function. While Hartree-Fock is conceptually sim-
ple, on a practical level it is not accurate enough to be useful for chemistry
or for computing cluster structures. The level of accuracy for several sim-
ple molecules is shown in Table 1, taken from Perdew [41,42]. The mean
absolute error in the atomization energies (energy difference between the
molecule and the individual atoms in isolation) is 3 eV in the Hartree-Fock
theory. The predicted binding of the Lis clusters is a factor ten too low, and
another alkali metal cluster not in the table, Nao, is incorrectly predicted
to be unbound.

The three lines in Figure 5 going down from Hartree-Fock give three
different approaches to improve the theory. The “CI”, configuration inter-
action expansion, uses Hartree-Fock as a basis of many-body wave functions.
This is a very systematic approach, and it gets marvelous results in small
systems, as you will see in the seminar of Bonacié-Koutecky. But the num-
ber of terms needed in the CI expansion to achieve a given accuracy grows
exponentially with the number of electrons. So one turns to other methods
to deal with larger systems.

Many-body perturbation theory was developed in the 1950’s to make
possible systematic calculation of the energy of quantum systems with an
infinite number of particles. One avoids the many-body wave function,
but the price one pays is to deal with Green’s functions that depend on
a few more variables. In condensed matter physics, the most refined ap-
proximation that can be presently computed this way is called the “GW”
approximation. You can find a review of it by Hedin [43]; I will not discuss
it here in any detail.

The last approach to make a better theory is to keep the form of the
Hartree-Fock equations, but improve the energy function that is put into
the variational principle. The DFT will thus include effects of correlations
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by changing the Hamiltonian. In practice, there is another aspect of DFT as
it is normally applied, the local density approximation (LDA). Evaluation
of the exchange interaction is computationally burdensome, and approxi-
mations to make it look like an ordinary potential have been used since the
time of Slater. In defining the effective exchange potential, one is guided by
the energies in the uniform electron gas. The exchange energy of an electron

of momentum & is [44]
2k kz e k2
lc> = —CWF (1 + X log ) ;o (4.3)

- Z <i” ek

where ky: is the Fermi momentum. The total exchange energy (per electron)
E, is given by

Ex_—z<«;j

i<

k+ kg
krp — k

r’|

e2

g -3 -3
]| J’b> = Eerp = Ee"z(&rrzne)l/3

where in the last equation we used the relation between electron density
ne and Fermi momentum, n, = k§/37r2. Slater proposed making a local
density approximation by using a two-body contact interaction that would
have the same total energy. The one-body potential in the Schrédinger
equation would then be

3
VSiater(?‘) = _ge:z('?’wzne(?"))l/s'

THIS IS WRONG. Going back to the variational principle, one sees that
the one-body potential should be defined by the variation of E,
onEy e?

Valr) = 2% = = % 3n2ng(r) /2. (4.4)

This is a factor 2/3 different from Slater’s potential.

Kohn and Sham proposed to include the correlation energy of the elec-
tron gas in exactly the same way, determining an exchange-correlation po-
tential Vi, from the exchange-correlation energy Ey. of the interacting Fermi
gas. This is usually done through a numerical parameterization, giving us
the “LDA” of density functional theory. It gives a considerable improve-
ment over Hartree-Fock, as may be seen by the entries in Table 1. However,
the accuracy is still not enough for chemical modeling. An obvious problem
of the LDA is that the single-particle potential does not have the correct
asymptotic behavior. The electron potential in a neutral cluster should be-
have as —e*/r for large separation of the electron from the cluster. But in
the LDA the Coulomb potential is calculated with all the electrons and thus
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Table 2. Atomic properties of the Ag atom in LDA.

1P First excitation
Experimental 7.75 3.74
Kohn—Sham:
eigenvalues | €s =4.6 Ae =39
total energies 8.0 4.1

vanishes outside the cluster. This makes the LDA unreliable for calculating
ionization potentials from the Kohn-Sham eigenvalues.

As an example of the last problem, Table 2 shows the ionization potential
(IP) of the silver atom and the excitation energy of its first excited state.
According to Hartree-Fock theory, the Ag atom has a single electron in
a s orbital, with an unoccupied p orbital just above and a fully occupied
d orbital just below. Thus the IP should correspond to the energy of the
s-orbital. For the silver atom, the Kohn—-Sham eigenvalue is off by 40% from
the experimental ionization potential. Nevertheless the LDA can give quite
accurate ionization potentials if they are calculated a different way, namely
as a difference of total energies,

IP = E(Ag) — E(Ag™). (4.5)

The table shows that the error is only 3% when the IP is calculated this
way. For the excitation energy, which is an s — p transition, the difference
of Kohn-Sham energies Ae = ¢, — ¢ is fairly good. However, there are
caveats that we will come back to later.

Becke [45] proposed a fix to get the —e?/r asymptotic potential by
adding a term to the energy functional that depends on the gradient of
the density, Vne(r). His proposed form works amazingly well. This is the
“generalized gradient approximation”, GGA. From Table 1, we see that
energies can be calculated to an accuracy of tenths of an eV. Further im-
provements may be possible. The Kohn-Sham energy functional depends
on the nonlocal quantity

T= ZW’Q&;I?’

7

in the kinetic energy term. Omne could think of using other functional de-
pendencies on 7; an example is given in the last line of Table 1.

Before going on to electronic excitations, I want to show how well the
LDA works for describing the infrared active vibrations in Cgp. One first
calculates the LDA potential energy surface as a function of displacement
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Table 3. Excitation energies of Cgo infrared-active vibrations (Ti,,).

Mode 1 2 3 4
Experimental | 0.065 eV 0.071 0.147 0.177
LDA error
Ref. [22] —2% 2%  +2% +10%
Ref. [46] -3% 7% 8% —-7%

of the atoms from their ground state positions. Diagonalizing the Hessian
matrix then gives the normal modes and their frequencies. The results of
three different LDA calculations are shown in Table 3. The agreement with
experiment is impressive, with mean absolute relative error on frequency
only 4%. A more demanding test of the theory is the transition strength
associated with the vibrations. The accuracy here is perhaps only a factor
of two [22]. But that is a great improvement over previous theories that
were completely unreliable.

4.1 Time-dependent density functional theory

Schrodinger proposed two equations in his original paper, the eigenvalue
equation for static properties and the time-dependent equation for the dy-
namics. But the left-hand side of both equations was the same. The situa-
tion is the same for dynamic theories based on Hartree Fock or DFT. The
theories may be derived from the time-dependent variational principle,

6fdt <\IJ ‘H - 7%‘ nIJ> = 0. (4.6)

Taking ¥ to be a Slater determinant, and varying with respect to ¢} (), one
obtains time-dependent Hartree-Iock equations, first proposed by Dirac in
1930. The corresponding equations for DFT are the time-dependent Kohn—
Sham equations,

?,2 - 2
~ Vi) + ([ @ 2D oty

+)  Vion(r — )qb;(? ) —m—qbt(? t). (4.7)

ions

The first application of TDDFT was to describe the photoionization of
atoms [47]. The theory has since been widely applied to clusters, molecules,
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Fig. 6. Band gap in insulators and semiconductors, theoretical versus experimen-
tal for the GW approximation and for the DET. From Hedin [43].

and bulk matter. There are several quite different methods to solve the
equations, which I will not discuss in detail.

Before describing the applications to clusters, I want to give a cautionary
remark. It is tempting to apply DFT to excitations by simply replacing the
ground state single-particle wave functions by excited state orbitals in the
Kohn Sham equation. This seems to work well for small systems, as for
example in the Ag atom discussed earlier, and in small carbon structures
that will be discussed later. However, the theory can give poor results
in large systems. This is the “band gap” problem. This may be seen in
Figure 6 showing the band gaps between occupied and unoccupied bands in
some insulators and semiconductors. The DFT, shown with black diamonds,
is consistently low, by as much as 5 eV in the Lil* crystal.

The band-gap problem originates in the LDA treatment of exchange.
From equation (4.3) one sees that the exchange potential of an electron in a
Fermi gas has a wealk logarithmic singularity at the Fermi surface. Particle-
hole excitations across the Fermi surface have a higher energy for a given



84 Atomic Clusters and Nanoparticles

momentum difference than the quadratic kinetic energy functional. Because
the singularity is weak, it does not show up for small systems. Clearly, any
local approximation will miss the singularity. An effective, but computa-
tionally costly method to overcome this is to calculate the electron energies
from the many-body perturbation theory. In the GW approximation, the
electron-self energy is calculated including exact exchange. The GW the-
ory gives an enormous improvement to the band gap, as may be seen from
Figure 6. But the computational demands of the theory has so far restricted
its application to relatively simple systems.

5 Linear response of simple metal clusters

In this section I want to present some results for metal clusters. The most
simple are the alkali metals, having only a single valence electron in the
s-atomic orbitals. The jellium model, introduced in Section 3 and to be dis-
cussed in detail by Manninen, describes the qualitative properties of sodium
clusters very well. The metals in the IB column of the periodic table (the
“coinage” metals Cu, Ag, Au) also have a single valence electron in the
s-orbital, but in these metals there is a filled d-shell just below the valence
shell, which affects the properties quite strongly. We shall first discuss the
alkalis and then see the differences with the IB metals.

5.1 Alkali metal clusters

At the crndest level, the optical response of the metals will show a surface
plasmon at a frequency given by the surface plasmon formula
equation (3.12). If we take the density n. at the bulk value for sodium,
the formula gives

ws ~ 3.4 eV.

In fact, the observed surface plasmon is at a lower frequency (“red-shifted”).
For example, the optical absorption spectrum of the cluster Naj, in Figure 3
shows the resonance at a frequency of 2.6 eV. One possibility to explain the
red shift would be that the density of atoms in the cluster is less than in the
bulk. This idea is not born out in DFT calculations of the cluster structure,
so I will not discuss this possibility any further. Another mechanism to ex-
plain the red shift is the spillout of the electrons, as mentioned in Section 3.
We can analyze this mechanism quantitatively by calculating the optical
response of the jellium model. There is a computer code, called J ellyRpa,
that I wrote and distributed [11] to calculate the response of spherical jel-
lium, making no other approximations on the dynamics. Indeed there is an
effect of the spillout, as may be seen in Figure 7. The peak is shifted from
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Fig. 7. Comparison of jellium model of a large sodium cluster with the surface
plasmon formula and the TDDFT. The transition from the surface plasmon for-
mula is shown with a vertical line.

3.4 to 3.0 eV, which is about half of what is needed to explain the empirical
position. Another possibility is that the local density approximation might
not be accurate enough. In particular, we saw in Figure 6 that the local
approximation to exchange could produce serious errors in infinite systems.
This question was addressed in finite clusters by Madjet et al. [48], who
examined and compared the different treatments of exchange. They found
that the LDA exchange was quite satisfactory for sodium clusters, and could
not be the reason for the discrepancy.

Lastly, the jellium approximation might be inadequate; the full TDDET
of course includes a realistic treatment of the ionic potentials, Comparing
the full TDDFT with the jellium, we found mixed results. Taking the ionic
potential from the naive psendopotential prescriptions in the literature, we
found a surface plasmon at the same frequency as in the jellium model. This
is also shown in the figure. However, there is an different prescription for
the pseudopotential [49], treating the core electrons somewhat differently.
This gives an additional red shift, essentially bringing the surface plasmon
down to the observed position. In the end, it is rather disquieting that a
seemingly small change in the ionic potential would have a very noticeable
effect on the absorption spectrum.
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Fig. 8. Surface plasmon in Li clusters with N = 150. The prediction from
equation (3.12) is shown by the vertical line.

There is an even larger red shift in lithium clusters: the formula gives
4.6 €V, while the observed peak in the absorption spectrum is at 3.0 eV [51].
Here it is much easier to understand how the shift arises from the ionic
potential. The ionic potential is different for s and p waves because there
is a core s orbital that is excluded from the valence wave function but no
corresponding excluded p state. Thus, the ionic potential is effectively more
attractive for p orbitals. This makes it easier to excite the electrons from
the ground state, and lowers the excited state energies. This can be seen
in Figure 8, comparing the jellinm model with the full TDDFT calculation.
As well as substantially shifting the peak position, the TDDFT disperses
the strength somewhat on the high-frequency side. Both features are seen
in the experimental data, which is rather well reproduced by the TDDF'T.

The strength of the surface plasmon in sodium clusters, both theoreti-
cally and experimentally, is very close collective limit with f equal to the
number of valence electrons. In lithium clusters, the effect of the ionic poten-
tial may be interpreted as a giving the electron an effective mass m* ~ 1.3m,
which also reduces the sum rule by the same factor (e.g. see [50]).

5.2 Silver clusters

The surface plasmon formula is also poor for silver clusters, but for a differ-
ent reason. Here the formula gives 5.4 ¢V, but the observed surface plasmon
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is in the range 3.5-4.0 ¢V. In this case, it is not justified to neglect the polar-
ization of other electrons, namely the filled d-shell [52]. In reference [28] we
calculated spectra of silver clusters including explicitly the d-electrons in the
TDDFT. The observed peaks in Agg, for example, are nicely reproduced by
the theory. In Agd the experimental spectrum [53] shows a single peak at
4 eV, having a width of about 1 eV. The theory gives several transitions in
the range 3.6-4.4 eV that together could give a single broad peak of about
the needed width. Thus the theory reproduces the energetics of the surface
plasmon rather well.

I now want to show the role of the d-polarizability in the properties of the
plasmon from a more analytic point of view. I start with description of the
polarizability of the d-electrons in the Ag atom. This somewhat unphysical
guantity was calculated in [28] by the TDDFT keeping the s-electron frozen
as the ground state orbital. The polarizability of the core came out to be
ag ~ 2 A% = 14 a.u. at the surface plasmon frequency. In that work we
derived the effect on the surface plasmon using the linear response technique.
Here T will show another derivation using the dielectric function. We can
associate a dielectric function with the d polarizability using the Clausius—
Mossotti formula, equation (3.7), eq = (1 + 2aq/r3)/(1 — aq/rd). For silver
ro = 75 = 3.02, giving ¢4 =~ 4. Thus the d-orbital polarizability screens
external fields by a considerably factor.

Let us redo the dielectric theory of the response including separate con-
tributions from the s- and the d-orbitals. To derive the dielectric function
for mixed sets of charges, we go back to the definition of the dielectric func-
tion and the relation to surface charges. There will be two surface charges
screening the field, og and o,. In terms of the internal field &, inside the
conductor, the surface charges are given by

4770-.';,(.! = (Es,d = 1)ginL-

The same equation also holds for the total charge and total dielectric func-
tion, so one can easily derive for the complete dielectric function

€=¢qg+es— 1.

Taking eg from the Clausius—Mossotti formula and e, from the free electron
model equation (3.9) the dielectric function becomes
1+ 2aq/7 wy

1—ag/rd  ww+iy

(5.1)
Next we put this into the Mie formula for the polarizability. With a bit a
algebra the expression becomes (dropping the iv)

1—e  _qwi(l—ay/rd) —wiaq/r}
2+e w2l —ag/rd) —w?

a=R? (5.2)
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Fig. 9. Integrated strength function in Ags comparing Mie theory (solid line)
with TDDFT (dashed line).

From the denominator one sees immediately that the resonance energy is
shifted to

UJ; = w.q(l - ad/?‘g)u?‘

Taking the previous numerical value for ¢y, this gives w = 3.7 €V, which
is almost exactly what is needed to describe the empirical resonance. In
effect, the charges of the s-electrons are screened by a factor /1 — ay/ ?3
I finally want to discuss the strength of the surface plasmon. Unlike
the alkali metal clusters, the strength is strongly reduced by the d-electron
screening, at leﬂast in theory. Figure 9 shows the integrated strength func-
tion, fgp = j{)L dE'S(E") for Agg, calculated in the TDDFT and in the
Mie theory using the empirical dielectric constant for silver metal. The
two curves are surprisingly similar. Thus with respect to the theoretical
polarizability, a small silver cluster seems to behave as a piece of the bulk
metal. In the Mie theory, the surface plasmon is seen as the step at 3.6 eV.
The finite system calculation gives a split peak, with the stronger exci-
tation slightly blue-shifted. The height of the step gives strength of the
resonance; we see that it is roughly 2, which is a factor of 4 lower than the
number of valence s-electrons in the clusters. This another manifestation
of the screening by the d-electrons. It can also be understood rather simply
by the above polarizability function. In the neighborhood of the resonance,
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the above polarizability can be expressed

s

R3 ’ P .
s TW;U — aq/rd) (w —— +imd(w — wi)) :
Putting this in equation (3.4), we find for the associated strength,

f=N(—ag/rd)?
Since the coupling to the external field goes as e?, each charge here is
screened by a factor 1 — og/ry. Numerically, the predicted screening is
a factor of 4, as found in the microscopic calculation.

The situation would be completely satisfactory except that it does not
agree with experiment. The experiment of Tiggeshdumker et al. [53] mea-
sured not only the position of the resonance in Agd but also its strength.
The integrated strength over the resonance is about 4, more than twice
the theoretical value. I am sorry that I can not give you a resolution of
this disagreement. But the measurement of total strength is not easy ex-
perimentally, and so one should not give up the theory without additional
confirmation.

6 Carbon structures

In this lecture [ will discuss carbon structures, going from small clusters and
molecules to fullerenes and nanotubes. A very simple theory, the Hiickel
model, turns out to be an excellent guide to the electronic structure ob-
tained by more elaborate means such as the density functional theory. There
are two requirements for the Hiickel model to be applicable. The first is that
each carbon and its neighbors lie in a plane. Then the symmetry with re-
spect to plane allows the orbitals to separated into o or 7 types having even
or odd reflection symmetry, respectively. This classification is in fact useful
even il the planar condition is not strictly met, as in the curved fullerenes
and nanotubes. The other condition is that the 7 orbitals are at the Fermi
surface. This is the case for all the systems I consider. The 7 orbitals on
different atoms couple rather weakly, and the Hiickel models treats the wave
function by the amplitude of the 7 orbital on each carbon, constructing the
eigenstates from the simple hopping Hamiltonian

2
H = —-,BZ Z aj-wajzs.

S ji,d2

Here the sum j;, jo runs over pairs of adjacent carbon atoms, s is a spin
label, and [ is a parameter giving the hopping matrix element between the
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atoms. The hopping parameter can depend on distance d between carbon
atoms when that varies. It will turn out that a fair parameterization is
given by [29]

2.7

B(d) = 2.5 (1'43 A) " Y (6.1)

6.1 Chains

The first structures I want to consider are linear chains. If the axis of the
chain is in the z-direction, both the p, and p, atomic orbitals will have =
character. To find the spectrum within the Hiickel model, we start with
an infinite system. Here, by the Bloch theorem, the eigenfunctions have
amplitudes on the atoms that vary from atom to atom as exponentials:

br(j) ~ exp(ijK) (6.2)

where K is a parameter of the eigenstate and j indexes the atom in the
chain. Then ¢ is the solution of the Hamiltonian equation

Hox = exdr
with energy
ex = —2Pcos K. (6.3)

To find the solution for a finite chain, I use a trick. Namely, the wave
function on a finite chain with N atoms at positions 7 = 1,2, ..., N behaves
the same under the hopping Hamiltonian as a wave function on an infinite
chain, provides the wave function vanishes at sites 0 and N + 1. There is
no hopping from these sites in the finite system because there are no atoms
there. The vanishing boundary conditions are satisfied by sine functions
with parameters K = wm/(N -+ 1), where m is an integer. The normalized
wave functions are then

ﬁbm(.] )=
From equation (6.2) the energies of the orbitals are

T
—_— 2 5 E -
€m = —2cos (N 1) (6.4)

Let’s see how well this compares with the LDA energies. In Figure 10 we
compare the Kohn—Sham energies of the 7 orbitals in the cluster C; with




G.F. Bertsch: Excitations in Clusters 91

5
0 e PEENSY 1
=
L
& 5
5
(= —
] —_—
—e0e— —_—
-10
— 00— _
-15
LDA Hueckel

Fig. 10. Comparison of 7 orbital energies in the Cy7 cluster.

equations (1.2-3). The hopping parameter in the Hiickel model was taken
from equation (6.1) and energy scale was set by aligning the highest occupied
orbital, m = 3. The occupied orbitals are indicated by black circles in the
figure. We see that the Hiickel model is quite accurate in the neighborhood
of the Fermi energy and below.

A very important derived property is the gap between occupied and
unoccupied orbitals. For odd-numbered chains, the highest occupied orbital
has m = (N — 1)/2. Thus the gap energy is

(N - 1= (N + 1)m . 0
; =18 | — cos = 2fsin —— - 5
Ae ﬁ(COSQ(NJrl) COS2(N+1) 2[)’5111N+1 (6.5)
Asymptotically, the gap for large chains decreases as
B (6.6)
€r~v — .
N

The comparison of LDA [25] with the Hiickel model as function of chain
size is shown in Figure 11. There is one complication that shows up as an
odd-even staggering in the LDA spectrum. The 7 orbitals in a chain have a
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Fig. 11. Systematics of the energy gap and the collective excitation in carbon
chains, compared with functional fits of the form (6.6) and (6.10). The filled
circles show the experimental energies of transitions of clusters in a noble gas
matrix, from references [54,55].

two-fold spatial degeneracy (as well as the usual two-fold spin degeneracy).
The highest occupied orbital is only half filled for even N, giving them a
different gap.

The excitation of an electron from just below to just above the Fermi
level will have a large transition strength, close to the number of electrons
in the = manifold of states. Under these conditions, the frequency of the
excitation will be strongly perturbed from the gap energy Ae. When the
TDDET is applied, the Coulomb interaction pushes the strength to higher
energy. Of course the total strength is preserved due to the Thomas-Reiche-
Kuhn sum rule.

The TDDFT calculated energies of the strong transitions are show as
the boxes in Figure 11. The shift from the gap energy is factor of 2-3,
making the transition very collective. The theory describes the experimental
data (shown by filled circles) quite well. Note that experimental data is
only available for the more stable odd-number clusters. A ring structure is
probably more preferable in the midsize even-number clusters.

A qualitative description of the transition energies can be obtained using
the matrix version of the TDDFT theory and considering only the single
state, the excitation across the gap Ae. The matrix version of TDDFT
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reduces to a simple formula in that case, giving a transition energy w

w = v/ Ae(Ae + 2v). (6.7)

This formula is the same as equation (4.12) in reference [18], which contains
a derivation. To find the interaction v, let us assume that it depends only
on the distance between carbon atoms and has the following form

Il

U jl=j2 (6.8)

2
j1# 52

v(J1, j2)
- [&4
dlj1 — jal

where d is the distance between carbon atoms. The matrix element for an
excitation from orbital my to me is then

¥ =d Z qul (7] )¢TH.2 (j1)¢?i'L1 (jg)(bmz (j2)”(j] aj2)
Ju.J2

with the factor 4 coming from the degeneracy of the orbitals. Taking the two
coefficients in equation (6.8) as parameters, the TDDFT calculations shown
in the figure are fit with parameter values e?/d = 11.7 ¢V and U = 11.7 eV.
The value for e2/d is very close to what one would expect from the distance
between carbons, d = 1.28 A, Note also that the on-site interaction U is not
stronger than the interaction between neighboring carbons. The reason is
that the exchange and correlation energies compensate the stronger onsite
Coulomb interaction.

It is interesting to examine the asymptotic behavior of w for large chains.
We already found that Ae has an 1/N behavior but v has a different de-
pendence. With the form equation (6.8) for the interaction, and the sum
over pairs has an asymptotic logarithmic dependence on N coming from the
1/|j1 — j2| term. The logarithmic dependence was noted in [25] and com-
pared with an analytic formula analytic formula derived from the plasmon
dispersion in a long wire,

dmne’q? 1
w?= ——"log — - (6.9)
Me qa
Here a is the radius of the wire, and ¢ is the wave number. For a finite chain,

we may take ¢ ~ 1/N, and the N-dependence of the excitation becomes

vA+Bln N
N '
One see in Figure 11 that a straight line (corresponding to 1/N in the
logarithmic plot) gives a good fit to the N-dependence for Ae but not for w.
The wire formula other hand describes the N-dependence of w quite well.

(6.10)
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Fig. 12. Hiickel wave function construction for polyacetylene.

6.2 Polyenes

The next system I will discuss are chain molecules have alternating single
and double bonds between the carbons, the conjugated carbon molecules.
These are the polyene molecules, beginning with the two-carbon molecule
ethylene and going to the infinite chain, polyacetylene. The molecules have
hydrogen atoms as well, which do not play any role in the 7 orbitals. As
before, it is easier to solve the Hiickel Hamiltonian for the infinite system.
In the polyenes, the distance between the carbons alternates, depending
on whether the bond is single or double. Thus there will be two hopping
matrix elements, [y and (4. To solve the problem, we divide the chain into
unit cells containing two carbon atoms attached by a double bond. The
system is periodic with this unit cell so we can write the wave function for
the atoms in the cell and adjacent to the cell as shown in Figure 12.

Let us apply the Hamiltonian equation H¢ = e¢ at two sites in the unit
cell. This gives the two equations,

—Bstpe M — Bapy, = €gq (6.11)
—ﬁdfi’a - 6H¢neil‘f — E¢'hv

The equations are easily solved (multiplying them together) to get a formula
for the energy,

er = %/82 + B2 + 2,04 cos K. (6.12)
Interestingly, it has a gap at half filling given by
Ae = 2|84 — . (6.13)

In this case I don’t know a trick to get the finite system spectrum from
this result. But the Hiickel Hamiltonian is easy to diagonalize numerically,
with the dimensionality of the matrix equal to the number of carbon atoms.
Fitting the LDA energies of the 8-carbon polyene, one finds hopping pa-
rameters of 2.27 and 2.80 eV. These parameterization fits the LDA energy
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Fig. 13. Transition energy of the collective m — 7" transition in polyenes, compar-
ing theory with experiment. The TDDET is the solid line; the points are various
experimental measurements. See reference [29] for details.

gap of all of the polyenes in the range N = 2—40 very well. However, in
polyacetylene, the predicted gap from equation (6.13) is 1.08 eV, which is
rather far off the experimental value of 2.1 eV, This is undoubtedly the same
gap problem of extended insulators that was mentioned in Section 2. The
problem is seen in the LDA calculations of very large finite polyenes [56].
As in the case of the semiconductors, the GW approximation gives a much
better gap [57].

Let us now examine the excitation energies of the strong transitions. The
results of the TDDEFT are compared with experimental data in Figure 13.
The agreement is rather satisfactory. It would be interesting to analyze
these results in the framework of the Hiickel model, but I have not done so.

6.3 Benzene

We now turn to the benzene molecule, which for the Hiickel molecule is
a perfect hexagon of carbons (bond length 1.40 A); the outside hydrogens
hardly affect the 7 electrons. I will analyze the orbitals with a poor man’s
group theory, utilizing only the 6-fold rotation symmetry about the center of
the hexagon. We can still make use the wave function from equation (6.2),
but now the boundary condition is that ¢x (0) = ¢ (6), giving K = mn /3
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Fig. 14. Singlet m — 7" vertical excitation energies of benzene.

for integers m. Here m has the same meaning as the azimuthal quantum
number of the rotation group. The wave functions and orbital energies are
then given by

. g, 5
¢.m(_]) = %emaj‘
T

€m = —Qﬂcos? . (6.14)

The lowest state has m = 0, and then there are two degenerate states
with m = =£1. The 6 7 electrons in benzene fill these three orbitals (with
cach orbital containing two spin states). The lowest unoccupied orbital is
the two-fold degenerate /m = %2 pair. The sixth and highest orbital has
m = £3. The state is the same for either sign of m. The energy gap is
given simply by ea — ¢; = 2.

Four distinct excitations can be made at the energy gap, due to the
degeneracies of the orbitals just above and below the gap. The particle-hole
states can be labeled by the change in m required to produce the state. For
example, the M = +3 state has the electron in orbital m = —1 promoted
to the orbital m = +2. Thus it appears that there should be two two-fold
degenerate excitations, M = %1 states and M = +3 states. The former are
have dipole matrix elements with the ground state and will be prominent in
optical absorption spectrum. The latter two states mix together, due to the
indistinctness of the +3 transition density. This gives an energy splitting
between the states, leading to a spectrum with three excitation cnergies.

Figure 14 shows this energetics, and compares with the full scale time-
dependent density functional theory. The uppermost state (“1E4,”) has
a large optical absorption transition strength, and can be described as a
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Fig. 15. Comparison of experimental and theoretical absorption spectrum in
benzene, from reference [29)].

AM = +1 transition. The next state down is weaker by a factor of ten, and
is assigned the linear combination |+3) +|—3) of the AM = 43 transitions.
The other linear combination, |+3) — | —3), has vanishing transition density
on the carbon atoms, and is hardly shifted by the interaction from the
unperturbed excitation energy Ae. The TDDFT theory gives an excellent
account of these states with no free parameters. In the Hiickel theory, we
already get the lowest state because it is at the gap energy. It is interesting
to see how well a simple Hiickel model does for the energy shifts of the
other states. Taking the Hiickel model for the wave functions in the £y,
excitation, the matrix element for the (m = 1) — (m = 2) excitation is

- %(«u(o,(}) +0(0,1) — v(0,2) — (0, 3)).

Taking v(0, 0) from Section 6.1 and the others as v(0, j) = e?[ri;, the matrix
element is 3.6 eV and equation (6.7) gives an excitation energy of 7.6 eV,
compared to 7.0 eV experimentally. So in this case the simple formula is
somewhat inaccurate.

As one goes higher in energy, there are many more states that can be
excited, and the TDDFT gives a prediction for the entire spectrum. The
absorption spectrum is shown in Figure 15, compared with the TDDEFT
theory. As stated above, the sharp state at 7.0 is the collective @ — 7*
transition. Just above, there is some tiny structure in the experimental
spectrum that reminds one of tuft of grass. These are the so-called Rydberg
states, having a very loosely bound electron in the Coulomb field of the
ion. These states cannot be described in the LDA because of its incorrect
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Fig. 16. Comparison of 7 orbital energies in the Cgo molecule.

asymptotic potential field. The broad structure centered around 15 eV is
due to the more tightly bound o electrons. Its center position and overall
width is correctly described by the theory. However, one can see that the
theory has additional structure at high energy while the experimental cross
section is very smooth. This is probably an artifact of the numerical method
used to calculate the TDDFT, placing the system in a box.

6.4 Cgo

The fullerenes are also carbon structures whose lowest excitations are con-
tained in the 7 —7* manifold. The nearly spherical shape of Cgo implies that
angular momentum quantum numbers can be used to some extent to classify
the orbitals. Thus, the lowest orbital of  character has an equal amplitude
on all the carbon atoms, corresponding to L = 0. This classification breaks
down at high L, where the discreteness of the Hiickel Hamiltonian becomes
visible in the spectrum. The spectrum of = orbitals is shown in Figure 16
with assigned L values. We see that the Fermi level splits the L = 5 or-
bitals. The arrows in the figure show the allowed 7 — 7% transitions. The
total transition strength occupied and empty m orbitals is about f = 15,
which is considerably smaller than the number of 7 electrons (40). Experi-
mentally, and in the TDDF'T, one sees a group of transitions at about 7 eV
excitation with a combined strength of about f = 10. Qualitatively, these
transitions can be understood with the tight-binding model [12].



G.F. Bertsch: Excitations in Clusters 99

n =1 0 +1

Fig. 17. Unit cells in the graphene lattice.

6.5 Carbon nanotubes

The last stop on my survey of carbon structures takes us up to extended
nanostructures, the carbon nanotubes. They have very interesting elec-
tronic properties. Depending on their structure, they can be conductors or
semiconductors, and one can even observe the individual conduction chan-
nels. Their properties may be understood with the Hiickel model, at least
on a qualitative level.

As we did before, we start with the theory for an infinite system, in
this case an infinite graphite sheet. We follow the same route we used in
constructing the wave functions for polyacetylene. Like polyacetylene, there
are two atoms in the graphite unit cell (see Fig. 17). We label the two atoms
“A" and “B” and distinguish the atomic amplitudes accordingly. Let us sup-
pose we have an eigenstate, decomposed into A-site amplitudes ¢ (n1,n2)
and ¢p(ni,ny) where (n1,n2) labels the cell in the two-dimensional lattice.
Then the Hiickel Hamiltonian only connects A and B amplitudes with each
other,

0  Hag oA\ A 515
( Hap 0 ) (;B ‘ QEB (6.15)

From the structure of these equations it follows immediately that the spec-
trum of eigenvalues comes in pairs with equal and opposite sign. For each
solution with energy ¢ we can get another state with energy —e by the
changing the sign of the ¢p’s while keeping ¢a the same. This symmetry
of the spectrum with respect to the sign of the energy was seen in benzene
and polyacetylene and will be seen again in Manninen’s lectures, and arises
whenever the lattice can be divided into two equivalent sublattices with the
Hamiltonian matrix elements zero within each sublattice.
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We are particularly interested in the states at the Fermi level, which is
at zero energy because of the half filling of a symmetric spectrum. So our
task is now to determine the structure of wave functions of zero energy in
the graphite lattice. There will be several of them, allowing arbitrary linear
combinations of ¢ and ¢p on some particular unit cell. As an example
we can assume that ¢g(0,0) = 0 and ¢4 (0,0) = 1. We may also assume
that the state is a Block wave, so we can characterize it with the vector
Er = K (@ - 1/V39) + KE(29/V3) where the two components Ky, Ky
give the phase change moving a cell to the right and to the upper right,
respectively. Thus

(bA,B (”1, ”2) _ Ci(K'n'l+K2"‘2)¢A'}3(0, 0)_

Then all ¢p amplitudes are zero, and equation (6.15) is trivially satisfied.
The other condition, H¢a = 0, reads as follows when expanded out for the
B amplitude on the site (0,0):

- PB (¢A(l: 71) o= (,bA(U, _1) S ¢A(0? 0)) =
— (0T D 1 e 11) 6(0,0) = 0.

The only way to satisfy this equation is to have the three terms in the middle
expression be the three cube roots of one; thus

(KT, KE) =w(2/3,4/3) or w(—2/3,—4/3). (6.16)

Since there is no continuous degree of freedom left in the choice of KT and
KE, the Fermi surface is a set of isolated points. This is the well-known
structure of the graphite Fermi surface: there is no energy gap between
occupied and empty orbitals, but unlike a metal the Fermi surface has zero
area. For other values of (K1, K2), the energy can be found the same way
we used for polyacetylene. The result is

e(K) = £8v/(1 + cos(K1 — Kz) + cos K3)? + (sin(K; — K3) — sin K2)2.

When K = K4 + Ko (#/2+ V3 /2)is near a I?p, the result can be approx-
imated as [59)

. B .
(R) %mm Re| (6.17)
We are now ready to look at nanotubes. We can construct a nanotube

by rolling up a sheet of graphite, joining the sides so the hexagons align,



G.F. Bertsch: Excitations in Clusters 101

Fig. 18. Fermi surface on a carbon nanotube.

as shown in Figure 18. The various ways of aligning the hexagons can be
distinguished by counting along the hexagons how far it is around the tube
to come back to the starting hexagon. The counting is done along adjacent
hexagons along the two directions corresponding to /Ky, s above.

Our e = 0 wave function will wrap around onto itself if the phases match
on the superposed hexagon. This is the case for the tube in Figure 18, but
will not be so if the hexagons are displaced one or two in any direction. The
precise condition is

K1Ni + KaNo = 2nrr
which from equation (6.16) is equivalent to
mod(N; — Ny, 3) = 0.

If it is satisfied, there is a state at the Fermi energy and thus there is a
conduction channel. If the condition is not satisfied, there is a gap at the
Fermi surface and the conduction channels only open when the chemical
potential is changed to put the Fermi level with the allowed states of the
channel.

The density of states can be measured by scanning tunneling microscopy
and one can see the higher states from the peaks at the thresholds (called
Van Hove singularies) [60]. In the cited reference, the authors observed a
number of peaks in a nanotube that they identified as a (13,7) structure,
nearly symmetrically distributed about ¢ = 0. The ones closest to the
middle were at € &~ 40.9 eV. To see whether this makes sense, let’s put the
boundary condition for a simpler tube, the (10,10), into equation (6.17).
The extra state then appears when 10A K, + 10A Ky = 27, Taking AK| =
A5, the condition becomes AK;, = 7/10; and the formula gives 8/, ~
(2.5)(7/10) = 0.78 eV, which is rather close to the measured value,
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6.6 Quantized conductance

The conductance of the individual channels can be derived from the statis-
tical reaction theory with two assumptions. Let us attach the two ends of
the nanotube to (electron) reservoirs and measure the current as a function
of the Fermi levels of the two reservoirs. The first assumption is that the
electrons travel through the tube independently. Then we can apply the
statistical theory to the single-electron level densities. The next assump-
tion is that the electrons go through without reflection and disappear into
the other reservoir, i.e. the transmission coeflicient of the channel is unity.
It is then very easy to derive the formula for the conductance considered
as a statistical emission of electron from each reservoir into the other. The
formula is

(’2

I = TLC—fV
1

where V is the potential difference of the two reservoirs in volts and n. is the
number of open channels, including the two spin states of the electron as two
separate channels. I will not go through the details in these notes because
the algebra is just the same as in my two-page published derivation in [12].
The staircase behavior of the above expression as the channels open up is
seen in many conductance measures on nanoscale structures. An example
of this phenomenon seen in the carbon nanotubes is [61]. This particular
experiment seems to show a case where n. = 1, which can only be if one spin
state of the electron is blocked. To my knowledge, there is no explanation
for a strong spin dependenl Lransmission.

Many of the results presented here were obtained in collaboration with K. Yabana, and his
contribution is gratefully acknowledged. The author also thanks D. Tomanek for discus-
sions related to Section 6.5, C. Guet for discussions related to Section 5, and T. Déppner
and Q. Huang for proofreading the manuscript. The author’s research mentioned in these
lectures was supported by the Department of Energy under Grant FG06-90I5R-40561.
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