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Abstract

These notes present a derivation of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) equa-

tion in the quasiparticle representation. That representation is also convenient for deriving some

approximate treatments of TDHFB, namely adiabatic TDHFB, QRPA, and Nakatsukasa’s method

to solve the QRPA equations numerically.
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I. NOTATION

The notation follows Ring and Schuck [1]. The Bogoliubov transformation between Fock-

space operators a†, a in the orbital space and quasiparticle operators β†, β is given by







a

a†





 =







U V ∗

V U∗













β

β†





 ≡ W







β

β†





 . (1)

Note that W is a unitary matrix. For an orbital space of dimension N , the U and V matrices

have the same dimension and W has dimension 2N . We will write |uv〉 for the quasiparticle

vacuum wave function corresponding to the Bogoliubov transformation U, V .

The Hamiltonian[2] is of the form

Ĥ =
∑

ij

hija
†
iaj +

∑

i>j,k>l

vijkla
†
ia

†
jalak + ... (2)

In the quasiparticle representation, the Hamiltonian is expressed as a sum of terms, each

containing a normally ordered product of β† and β operators as

Ĥ = H00 + (
∑

i>j

H20

ij β
†
i β

†
j + h.c.) +

∑

ij

H11

ij β
†
i βj +

∑

ijkl

(H40

ijklβ
†
i β

†
jβ

†
kβ

†
l + h.c.)+ (3)

+
∑

i>j,k>l

(H22

ijlkβ
†
i β

†
jβlβk + h.c.) + ...

The superscript shows the number of creation and annihilation operators associated with

each term. The ellipses indicate higher order terms that are not needed in the derivations

below. The formulas for the various terms in Eq. (3) are given in Ref. [1], Eq. (E.20-23).

The specific matrix elements that will be needed are

〈uv|βjβiĤ|uv〉 = H20

ij (4)

〈uv|βjβiĤβ†
l β

†
k|uv〉 = H22

ijkl + δjlH
11

ik + δikH
11

jl − δjkH
11

il − δilH
11

jk + δikδjlH
00 (5)

〈uv|βlβkβjβiĤ|uv〉 =
∑

P

H40

ijkl. (6)

Here we have assumed i > j and k > l and the sum in the last equation is over permutations

of ijkl. The compute code for evaluating H20 in terms of the U, V matrix in Eq. (4) is also

at the heart of the gradient method for solving the static HFB equations[1, Sec. 7.3.3],[7].

2



II. DERIVATION OF THE TIME-DEPENDENT HFB APPROXIMATION

The time-dependent HFB equations are usually presented in the physical representation

and that is indeed most convenient for computations. Pedagogically, the derivation in the

quasiparticle representation is quite transparent and good starting point for various ap-

proximations. This method was used by Schütte in Ref. [3] as a basis for discussing the

adiabaticity of nuclear collective dynamics.

and is also closely related to the gradient method for finding the HFB minima.

The full equation of motion, i∂/∂t|Ψ〉 = Ĥ|Ψ〉, cannot be solved exactly in the space of

HFB wave functions. But within that space, we seek an approximation of the form

i
∂

∂t
|utvt〉 ≈ Ĥ|utvt〉. (7)

From now on we will label the HFB wave functions by the time variable, |t〉 = |utvt〉. By

the generalized Thouless theorem, we can express the left-hand side as a 2-quasiparticle

excitation of the instantaneous HFB wave function, i.e.

i
∂

∂t
|t〉 =

∑

i>j

Zijβ
†
i β

†
j |t〉

for some matrix Z. To determine it, we take the overlap of Eq. (7) with a set of bra states

and demand that the matrix elements are equal. This can be imposed for all bra states of

the form of 2-quasiparticle excitations of the instantaneous vacuum, 〈t|βiβj. Thus

〈t|βiβji
∂

∂t
|t〉 = Zij = 〈t|βiβjĤ|t〉 = H20

ij . (8)

The time-dependent wave function may be expanded for short times ∆t as

|t+∆t〉 = |t〉+ i∆t
∑

i>j

H20

ij β
†
i β

†
j |0〉+ ... (9)

A formal expression for the integration to finite time is

|t〉 = T exp



i
∫ t

0

dt′
∑

i>j

H20

ij (t
′)β†

i (t
′)β†

j (t
′)



 |0〉 (10)

where T is the time-ordering operator. Note that the quasiparticle operators depend on time

since they are referenced to the instantaneous HFB state. If |0〉 is close to an HFB minimum,

H20 = Z will be parametrically small, and we can consider expanding the wave function in

powers of Z. This leads to the QRPA, derived in the next section. Another approximation,

the adiabatic TDHFB, may be derived by considering the evolution for small time intervals.

This is treated in Section V below.
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III. DERIVATION OF QRPA AS THE SMALL-AMPLITUDE LIMIT OF TDHFB

To derive the QRPA from the HFB equation of motion Eq. (8), we assume Z to be small

and consider only terms in the wave function up to order Z. The resulting equations are

linear and the solutions will be sinusoidal. Let us write the wave function associated with

frequency ω as

|t〉 ≈ |0〉+
∑

i>j

(Zr
ij cosωt+ iZ i

ij sinωt)β
†
iβ

†
j |0〉. (11)

Here Zr and Z i are real matrices, and |0〉 is a static solution to the HFB equation[5]. The

left-hand side of Eq. (8) takes the form

i〈t|β̃iβ̃j

∂

∂t
|t〉 = (12)

ω〈0|



1 +
∑

k>l

(Zr
ij cosωt− iZ i

ij sinωt)βlβ
†
k



 β̃iβ̃j





∑

k>l

(−Zr
kl sinωt+ iZ i

kl cosωt)β
†
iβ

†
j



 |0〉.

Here a distinction was made between the quasiparticle operators associated with the instan-

taneous state β̃ and those associated with the static HFB state (without tildes). In fact

they are the same to zeroth order in Z. We carry out the contractions on the right-hand

side of Eq. (10) and find to linear order in Z

i〈t|β̃iβ̃j

∂

∂t
|t〉 = −iωZr

ij sinωt+ ωZ i
ij cosωt. (13)

The right-hand side of Eq. (8) expands to

〈t|β̃iβ̃jĤ|t〉 = (14)

〈0|



1 +
∑

k>l

(Zr
ij cosωt− iZ i

ij sinωt)βlβ
†
k



 β̃iβ̃jĤ



1 +
∑

k>l

(Zr
ij cosωt+ iZ i

ij sinωt)βlβ
†
k



 |0〉

Here to keep all terms linear in Z we also have to expand β̃β̃,

β̃iβ̃j = (βi −
∑

Zikβ
†
k)(βj −

∑

Zjlβ
†
l ) = βiβj − Zij + higher order terms (15)

Carrying out the contractions gives

〈t|β̃iβ̃jĤ|t〉 = cosωt





∑

k>l

(H̄22

klij +H40

klij)Z
r
kl



+ i sinωt





∑

k>l

(H̄22

klij −H40

klij)Z
i
kl



 (16)
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where H̄22

ijkl is a shorthand notation for 〈0|βiβjĤβ†
kβ

†
l |0〉 −H00δikδkl. Equating the real and

imaginary parts of L and R yields two matrix equations, one for the coefficient of cosωt and

one for the coefficient of sinωt. The equations are

ωZ i =
∑

k>l

(H̄22

klij +H40

klij)Z
r
kl and (17)

ωZr =
∑

k>l

(H̄22

klij −H40

klij)Z
i
kl (18)

To make the connection with the usual form of the RPA matrix equations, we change the

notation to

X = Zr + Z i; Y = Zr − Z i (19)

A = H̄22; B = H40

X and Y are vectors indexed by the 2-quasiparticle label ij and A,B are matrices in that

space. Note that the dimension of the space is N(N − 1)/2 where N is the dimension of the

orbital space.

The coupled equations Eq. (17,17) take the familiar form
[

A B

−B −A

](

X

Y

)

= ω

(

X

Y

)

. (20)

IV. SOLUTION OF QRPA BY THE FINITE AMPLITUDE METHOD

The straightforward implementation of the A,B matrix equations for QRPA requires very

large computer resources due to the rank-4 tensor structure of the Hamiltonian operator

together with the dense matrix character of A and B. In fact, the main interest is in the

lowest few eigenstates and more efficient methods are possible. The method proposed by

Avagadro and Nakatsukasa [4] is particularly promising. Like the method proposed for

RPA in Ref. [6], it can directly use the computational modules that are used to solve the

corresponding time-dependent equation. The connection is very simple in the quasiparticle

basis. The basic idea is use numerical differentiation to compute the right-hand sides of Eq.

(17). We may assume that the code carrying out the time-dependent evolution uses complex

arithmetic. Then we need only H20 for the states |re〉 and |im〉 generated from |0〉 by the

transformations Zr and +iZ i, respectively. The calculated H20 matrix elements are

〈re|βiβjĤ|re〉 ≈
∑

k>l

(H̄22

klij +H40

kl )Z
r
kl (21)
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〈im|βiβjĤ|im〉 ≈
∑

k>l

(H̄22

klij −H40

kl )Z
i
kl.

The left-hand sides are the vectors created by applying the QRPA A and B matrices to the

vectors Zr and Z i as in Eq. (18). Then the eigenvectors and eigenenergy can be found by

some iterative Krylov space method such as the Lanczos algorithm.

V. ATDHFB

The adiabatic time-dependent HFB is a method to construct the inertial dynamics as-

sociated with a given path in the space of static HFB configurations. Usually the path is

constructed by the generator coordinate method. One defines a collective variable by the ex-

pectation of some one-body operator. The configurations are generated by the constraining

the HFB wave function appropriately.

We examine the short-time behavior of the wave function around a starting configuration

located at some point along the collective coordinate. In the QRPA we assumed that the

time dependence was sinusoidal, here we expand it in a power series in the time variable.

The imaginary part of Z does not affect the density at t = 0 and so can be nonzero; we

write Z i
ij = Pij + O(t2). On the other hand, the real part of Z must be zero at t + 0 to

preserve the starting density at t = 0; we write Zr
ij = tQij +O(t3). Thus we take the wave

function to be

|t〉 = (1 +
∑

i>j

(iPij + tQij)β
†
i β

†
j )|0〉 (22)

with P,Q real matrices. The wave function is inserted into the equation of motion and we

follow the same steps as in the derivation of the QRPA equations. The result is very similar

to Eq. (17),

(H̄22 −H40)P i = Qr. (23)

Since we were given the path, we can assume we know Qr. Thus, we need to solve Eq. (23)

for Z i. This is equivalent to inverting the matrix A− B from Eq. (20).

VI. CONSERVATION LAWS IN TDHFB

The quasiparticle representation is also convenient for deriving conservation laws that are

satisfied in TDHFB or QRPA. The time derivative of the expectation value of an operator
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Ô is given by
d

dt
〈t|Ô |t〉 = 〈t|Ô

(

∂

∂t
|t〉

)

+ h.c. (24)

For the HFB evolution, the expression in large parentheses is replaced by

1

i

∑

ij

H20

ij β
†
i β

†
j |t〉. (25)

The operator Ô is now transformed to the quasiparticle representation and the Wick con-

tractions are carried out. The result is

d

dt
〈t|Ô |t〉 =

1

i
(TrO02H20 − TrH02O20) (26)

The operator Ô is conserved if the right-hand side vanishes. This is the case if the operator

commutes with the Hamiltonian and it is a one-body operator. For two-body and higher-

order operators, the proof fails because the commutator with Hamiltonian involves the O40

tensor as well as the O20 matrix. The Hamiltonian itself is conserved because the right-side

of Eq. 26 explicitly vanishes in that case.
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