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Abstract

Two derivations of Marcus’s formula for transition rates are presented. The first derivation is

based on the Landau-Zener transition rate formula. The second makes use analytic expressions for

the Franck-Condon factors, derived by applying the stationary phase approximation to the WKB

wave functions of the oscillator Hamiltonians.
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I. MARCUS’S FORMULA

The rate of an electronic transition in a molecular system, treated in the Born-

Oppenheimer approximation, depends on the vibronic coordinates as well as the electronic

wave functions. Marcus derived a compact formula for the vibronic effects by making three

additional assumptions:

1. The transition is perturbative in the electronic degrees of freedom, and thus can be

treated by Fermi’s Golden Rule;

2. The vibronic dynamics is governed by the Displaced Harmonic Oscillator Hamiltonian

(DHOH);

3. The transition is semiclassical in the sense that the vibronic energy scale h̄ω is smaller

than other vibronic energy scales, i.e. the barrier height and the energy difference of the

two states.

The perturbation starting point for the derivation is the formula for the transition rate,

Wna
=

2π

h̄
|Hab|2

∑

nb

|〈na|nb〉|2δ(Eab + Ena
− Enb

). (1)

Here Hab is matrix element between the electronic states a and b. It is assumed to be

independent of the vibronic coordinate. The index n labels the vibronic wave functions

of the initial state a and m labels the vibronic wave functions of the final state b. The

argument of the δ-function is the difference in energies of the initial and final states, taking

into account both electronic and vibronic contributions.

The DHOH for the a state is the simple harmonic oscillator,

Ĥa = − h̄2

2M

d2

dx2
+

1

2
Mω2x2. (2)

In the state b, the origin of the harmonic oscillator is shifted by an amount xab,

Ĥb = − h̄2

2M

d2

dx2
+

1

2
Mω2(x− xab)

2. (3)

Fig. 1 depicts the Born-Oppenheimer potential energy surfaces. The transition goes

from the level n at En on the left to the level m on the right, at energy Em over its Born-

Oppenheimer minimum. Other relevant energies are Eab, the electronic energy difference

of the two configurations and E∗, the activation energy to overcome the potential barrier

between the two vibronic wells.

2



a

b

En Em

Eab

E*

m
n

Eλ

xab

FIG. 1: Born-Oppenheimer potential energy surfaces Va, Vb and energy levels n,m.

Besides Wn we also want to determine the transition rate at finite temperature T . The

expression to be evaluated is

WT =

∑

n e
−En/TWn

∑

n e
−En/T

. (4)

We shall derive the semiclassical limit of Eqs. (4)and (1) as

WT ≈ (2π)1/2|Hab|2
ωxab(MT )1/2

e−E∗/T . (5)

It may be convenient to use the energy variable Eλ = 1
2
Mω2x2

ab instead of the variables xab

and E∗ = (Eab −Eλ)
2/4Eλ in presenting the equation. Then it becomes

WT =
|Hab|2
h̄

√

π

EλT
exp(−(Eab + Eλ)

2

4EλT
), (6)

as in Ref. [3].

II. DERIVATION FROM THE LANDAU-ZENER FORMULA

The general Landau-Zener formula for the probability that a system will cross from a to

b is

Pab = 1− e−p, p =
2π

h̄

|Hab|2
d(Va−Vb)

dx
dx
dt

. (7)
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where Va(x), Vb(x) are the Born-Oppenheimer potential energy surfaces and dx
dt

is the velocity

of the system moving to the right in state a. The formula is valid assuming that Va, Vb are

slowly varying compared to the wavelength of the wave function of the moving system. See

Ref. [2] for a derivation.

To get to Marcus’s formula, we first need to assume that the interaction Hab is weak in

the sense that we can make the further approximation

Pab ≈ p (8)

To apply the formula to the DHOH, first note that the transition rate W will be the

product of the frequency the system hitting the barrier times the probability to make the

transition. The frequency of oscillation is fa = ω/2π but one must remember that it passes

the barrier point twice in each cycle, once from the left and once from the rate. The rate is

therefor

W = 2faPab =
ω

π
Pab. (9)

In terms of the variables of Fig. 1, the velocity of the system at the barrier is

dx

dt
=

√

2

M
(En − E∗) (10)

We also need the derivatives of the potential energy surfaces. Their difference turns out to

be independent of the position of the barrier in the DHOH and is given by

d(Va − Vb)

dx
= Mω2xab. (11)

From Eq. (7,8,9,10,11) we find for the rate Wn

Wn =
2|Hab|2

h̄ωxab(2M(En − E∗))1/2
. (12)

We now insert this into the equation for the thermal rate, Eq. (4). We make a change of

variable z =
√
En − E∗ in the numerator and approximate the sums by integrals

∑

n →
1
h̄ω

∫

dEn. The expression for the thermal rate then becomes

WT =
|Hab|2

h̄ωxab(2M)1/2
e−E∗/T

∫

2zdze−z2/T/z
∫

dEne−En/T
=

√
2π

|Hab|2
h̄ωxab(MT )1/2

e−E∗/T . (13)

This is the desired result.
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III. WKB DERIVATION

Our first goal is an analytic expression for the vibronic overlap |〈n|m〉|2, needed in Eq.

(1). We start with the WKB expression [1] for the vibronic wave function φn(x),

φn(x) ≈
K

(kn(x))1/2
cos(

∫ x

−xn

kn(x
′)dx′ − π/4). (14)

Here kn(x) is the local reduced wave number. In the DHOH, it is

kn(x) =
1

h̄

√

2M(En −
1

2
Mω2x2). (15)

The normalization constant K will be evaluated below. The lower limit of the integral is

the semiclassical turning point,

xn =

√

2En

Mω2
(16)

To find the normalization factor K, we separate the cosine function into exponentials,

cos(i
∫ x kdx′) = (e+i

∫

x
kdx′

+ e−i
∫

x
kdx′

)/2. The two terms represent waves traveling to the

right and to the left, respectively. The exponents cancel in the integrand for the right-right

and the left-left terms in the normalization integrals, and they are easily reduced to the

textbook integral
∫ 1
−1(1−z2)−1/2dz = π. The right-left and left-right integrals do not reduce

trivially, but their sum vanishes if xn is determined with the quantum energy En = h̄ω(n+ 1
2
)

in Eq. (16). Under those conditions the normalization factor is

K =

√

2Mω

πh̄
. (17)

The WKB wave functions are remarkably accurate. This may be seen in Fig. 2, comparing

n = 10 harmonic oscillator wave function compared with its WKB approximation. Of course,

in the vicinity of the turnings the WKB approximation breaks down.

The next task is to evaluate the overlap of φn(x) and φm(x − xab). We shall neglect

the overlap of a right-moving wave with a left-moving wave, and use the stationary phase

approximation to evaluation the overlap of waves moving in the same direction. The right-

right integral is

Inm =
Mω

πh̄

∫ xn

xm

1

(kn(x)km(x− xab))1/2
eiΦ(x)dx (18)

with

Φ(x) =
∫ x

dx′ (kn(x
′)− km(x

′ − xab)) .
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FIG. 2: Comparison of the n = 10 harmonic oscillator wave function with its WKB approximation.

The turning points ±xn include a quantum correction, 1
2mω2x2n = ω(n+ 1

2).

The left-left integral is the complex conjugate, I∗nm. In the stationary phase approximation,

one finds a point x∗ at which the phase satisfies dΦ/dx|x∗
= 0. This is within the integration

range for the left-left and right-right integral if En and Em are both larger than E∗. We note

also that local wave numbers at the stationary phase point are equal, kn(x∗) = km(xab−x∗) =

k∗. We carry out a Taylor expansion of Φ as

Φ(x) ≈ Φ(x∗) +
1

2

d2Φ

dx2

∣

∣

∣

∣

∣

x∗

(x− x∗)
2. (19)

We assume that the phase variation is rapid compared to the variation in the reduced wave

numbers and that the integral can be extending to ±∞ to obtain a Gaussian integral on a

deformed contour in the complex plane. The coefficient of the quadratic term is

d2Φ

dx2

∣

∣

∣

∣

∣

x∗

= −M2ω2xab

h̄2k∗
(20)

and the result for the modulus of the integral is

|Inm| ≈ (2πxabk∗)
−1/2 (21)

We now sum the moduli squared of the left-left and the right-right integrals assuming that

the cross term depending on the phase between them vanishes on average. This gives for
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the squared overlap

|〈n|m〉|2 = 1

πxabk∗
, En, Em > E∗ (22)

and zero if the energy conditions are not met. Going back to our oscillator quanta labeling

na, nb, the formula can be conveniently expressed as

|〈na|nb〉|2 =
1

π
((nmax − na)(na − nmin))

−1/2 (23)

where

nmin, nmax = nb + nλ ±
√
4nbnλ (24)

and nλ = Eλ/h̄ω. Eq. (23) is compared with the exact overlap probabilities Fig. 3. For the

given parameters, the allowed region of nb is nmin = 49 < n < nmax = 169. One sees that

the squared overlaps (shown as circles) scatter between zero and a maximum that varies

smoothly with n. The WKB approximation (shown as the line) is lower than the maximum

envelope. In fact it follows the average squared overlap quite well. This may be seen in Fig.

4, showing a running sum of the squared overlaps.

The transition rate formula Eq. (1) also requires the level density, which is smoothed in

the approximate expression

∑

nb

|〈na|nb〉|2δ(Eab + Ena
−Enb

) ≈ |〈na|nb〉|2
1

h̄ω
(25)

where nb in the left-hand expression satisfies Enb
= Eab + Ena

and is not necessarily an

integer. and in the DHOH. The final expression for Wn becomes

Wna
=

2|Hab|2
h̄2ωxabk∗

=
2π|Hab|2

h̄2ω
√

2nλ(na + nb)− (na − nb)2 − n2
λ

, (26)

the same as we found via the Landau-Zener formula. The thermal rate calculation derives

form this formula and will be the same as well.

IV. LIMITS OF VALIDITY

A number of steps in the derivation require h̄ω to be small compared to other energies

present in the rate equations (26) and (6). That condition is assumed for level density Eq.

(25), the WKB overlap expression, Eq. (22), and for the statistical summation over the

thermal ensemble, Eq. (4). The other approximation that Hab is small in some sense to
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FIG. 3: Circles: squared overlaps |〈n′|m = 9〉|2 as a function of m. Line: WKB approximation,

Eq. (22).
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FIG. 4: Summed square overlaps
∑

n′<n |〈n′|m = 9〉|2 compared with the corresponding integrated

WKB approximation.
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apply perturbative rate equation Eq. (1). This limit is clearly exposed through the Landau-

Zener derivation. Namely, the requirement is that p << 1 in Eq. (7) It may be expressed

in terms of the DHOH variables as

π|Hab|2

h̄ω
√

Eλ(En − E∗)
<< 1. (27)

Note that the condition Eq. (27) always breaks down for En close to the barrier E∗. How-

ever, above-barrier energies become dominant if the temperature is high enough. Thus the

condition becomes
π|Hab|2
h̄ω

√
EλT

<< 1 (28)

for the thermal rate equation. In the opposite limit,

π|Hab|2
h̄ω

√
EλT

>> 1 (29)

the theory becomes simple again. Then the states a and b are strongly coupled and the mo-

tion is adiabatic on the lowest energy surface. This regime should be described by transition-

state theory. For the DHOH, the rate would be given by

WT =
ω

2π
e−(E∗−|Hab|)/T (30)

A more quantitative assessment of the regimes of validity can be obtained by numerically

solving the time-dependent Schrödinger equation for the DHOH Hamiltonian. A computer

code for this purpose is provided in the Appendix. The initial state of the system is the

thermal ensemble for the vibrational excitations in the electronic state a. For each vibra-

tional state na in the ensemble, the code solves the time-dependent Hamiltonian equation to

obtain the probability Pb of the electronic state b in the wave function at time t = π/ω. The

rate is then estimated as Wna
= Pb(t)/t. Fig. 5 shows the computed rates in the DHOH;

see the figure caption for the DHOH parameters. Circles are the calculated rates from the

code; the line connecting them is to guide the eye. The solid line is obtained from the WKB

formula for the rate, Eq. (26), taking na as a continuous variable. Fig. (6) compares the

derived thermal rates. One can see from this figure that the classical formula works very

well except at the lowest temperatures. But that is to be expected, based on the limits of

validity discussed above.
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FIG. 5: Transition rates Wn in the DHOH model. Parameters are E∗ = 9, Eab = 0 and Hab = 0.1

in units of h̄ω.

With the numerical code we can also investigate the breakdown of perturbation theory as

the adiabaticity parameter in Eq. (27) becomes large. To see the effect, we take Hab = 1.5

and otherwise the same DHOH as in Figs. 6,7. This gives adiabaticity parameter

π|Hab|2

h̄ω
√

Eλ(En − E∗)
≈

√

5.5

T
, (31)

which rather far from the perturbative region. The calculated rates are shown in Fig. 7.

Now there are significant differences at both high and low temperatures. At the higher

temperature, the perturbative formula overpredicts the rate, which is what one expects to

happen if the perturbation is too large.

V. EXERCISES FOR THE READER

For further study, the reader might try the following exercises. I have not tried them

myself.

1. Effect of interference on 〈na|nb〉. In approximating this quantity, we neglect interfer-

ence between the left-left and the right-right contributions. Can one include the interference
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FIG. 6: Transition rates WT as a function of temperature, for the same DHOH as in the previous

figure. Solid line: WKB approximation, Eq. (6); Dashed line: using the Wn computed from the

time-dependent Hamiltonian equation.

analytically in the WKB treatment, and if so, how does it compare with the numerically

exact overlaps?

2. In Fig. 7, we considered an interaction strength higher than justified by the pertur-

bative treatment. Does one gets better agreement with the transition state treatment, Eq.

(30)?

VI. APPENDIX

#calculate the rate W_n for a range of n

# input data: v12,Ex,Eab,Nmax

# output n W_n n in [:nmax]

import sys,os

from math import sqrt,pi

from numpy import *
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FIG. 7: Transition rates WT as a function of temperature, for the same DHOH except forHab = 1.5.

Solid line: WKB approximation, Eq. (6); Dashed line: using the Wn computed from the time-

dependent Hamiltonian equation.

from numpy.linalg import eigh

import numpy as np

def ho_h1v(H1,V,v12,Nmax):

for i in range(Nmax):

V[i,i] = v12

H1[i,i] = i+0.5

return H1,V

def h2(Lam,v12,Eab,Nmax,flag):

H1=array([[0.0]*Nmax]*Nmax)

H2=H1*0.0; V = H1*0.0

Hbig = array([[0.0]*2*Nmax]*2*Nmax)

H1,V = ho_h1v(H1,V,v12,Nmax)
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for i in range(Nmax):

H2[i,i] = i+0.5-Eab+Lam**2

if i < Nmax-1:

hij = sqrt(i+1.0)*Lam

H2[i,i+1]=H2[i+1,i]=hij

Hbig[:Nmax,:Nmax] = H1

Hbig[Nmax:2*Nmax,Nmax:2*Nmax] = H2

Hbig[:Nmax,Nmax:2*Nmax] = V

Hbig[Nmax:2*Nmax,:Nmax] = transpose(V)

evals,vecs = eigh(Hbig)

return evals,vecs

def wns(v12,Ex,Eab,Nmax,nmax):

wnL=[]

t=pi

Elam= Eab+2*Ex + sqrt(4*Ex*(Eab+Ex))

Lam= sqrt(Elam)

flag = ’dhoh’

evals,vecs = h2(Lam,v12,Eab,Nmax,flag)

for ki in range(nmax+1):

u0=vecs[ki,:]

ut=u0*0.0j

for i in range(Nmax*2):

ut[i] = u0[i]*e**(-1.0j*evals[i]*t)

vect = dot(vecs,ut)

p0 = real(vect[ki]*conjugate(vect[ki]))

wn = (1.-p0)/t

wnL.append(wn)

return wnL

if __name__ == "__main__":
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print ’input v12,Ex,Eab,Nmax followed by ^D’

data = sys.stdin.readlines()

ss = data[0].split()

v12 = float(ss[0]); Ex = float(ss[1]);

Eab= float(ss[2]); Nmax=int(ss[3]); nmax = 20

wnL = wns(v12,Ex,Eab,Nmax,nmax)

for k in range(nmax+1):

print k, wnL[k]

[1] J. Mathews and R.L. Walker, Mathematical Methods of Physics, (Benjamin, 1970, second edi-

tion), Eq. (1.125).

[2] C. Wittig, J. Phys. Chem. B 109 8428 (2005).

[3] R.A. Marcus and P. Siders, J. Phys. Chem 86 2218 (1982).

14


