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0. Note to the reader

These lecture notes are intended as introductory, emphasizing the theoretical tools
and the qualitative phenomena. Thus, they may be useful to readers in other fields
who would like to see the phenomena and models of another discipline of quan-
tum many-particle physics. As in other fields, nuclear theory advances through
lengthy numerical calculations, but I believe that the computer-generated numbers
are only trustworthy and useful if they can be understood in simple terms. It is
this simplified essence I have tried to extract from theory, leaving out unessential
details. The material is mostly well-known to nuclear theorists. However, there
are a few new derivations may be pointed out here. In eq. (3.1-3.9), I derive the
collective oscillation frequency from a general variational principle, which shows
explicitly the connection to time-dependent mean-field theory. Also new is eq.
(6.3) for the particle escape width.

1. Introduction

How does a nucleus respond to an external perturbation? This fundamental ques-
tion of nuclear physics is the subject of these lectures. In the early history of
nuclear physics, the dynamics was thought to be purely statistical, since that the-
ory described well the behavior of fission at low energies. Just as the emergence
of single-particle motion with the shell model was a surprise in 1947, it was a sur-
prise when collective behavior was discovered in the nuclear response. The first
such mode, the giant dipole vibration, was discovered in 1947 (although there
were hints about this behavior much earlier). It is shown in Fig. 1, which has
graphed the photon absorption cross section for various isotopes of neodymium
as a function of energy. The lowest curve, for the isotope #*Nd, shows a smooth
curve peaking at 14.9 MeV. This is the resonance. It is very well fitted by the
Lorentzian function, see Section 2 below. As I will show in these lectures, we
have a very good understanding now of some aspects of the resonance, but not all.

Over the years several other giant resonances were discovered, when experi-
mental probes became available that were sensitive to the modes. These are listed
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Fig. 1. The giant dipole resonance in isotopes of neodinium, from ref. [?]. The lowermost graph,
showing the photon absorption cross section for 142Nd, is well-described by a Lorentzian function,
eq. (2.2), with parameters @ = 14.9 MeV, y = 4.4 MeV and a total strength of 1.2 times the TRK
sum-rule, eq. (2.11). The splitting of the peak in other isotopes is discussed in Section 2.1.1.

in Table 1. The giant dipole has isospin 7 = 1, and spin-parity /¥ = 1, which
couples easily to the electromagnetic field. Thus the dipole was discovered in pho-
ton absorption experiments. The next mode, the quadrupole, has isospin 7 = 0,
which allows it to couple strongly to the nuclear field of heavy ion projectiles. In
fact the early identification of this mode came from inelastic scattering of protons
and of electrons. The monopole mode in Table 1 also has isospin 7 = 0 and the
same parity as the quadrupole, which makes it somewhat difficult to distinguish
from the quadrupole by inelastic scattering. Nevertheless there are characteris-
tic features in the angular distributions* of inelastic scattering that led to a clear
identification by 1978. The Gamow-Teller mode is rather different in that it is
an excitation of the spin degrees of freedom, and it also involves changing a neu-
tron into a proton. The reaction that is specific to this mode is hadronic charge
exchange such as the (p,n) reaction.

*
Unfortunately, there is not enough time in my lectures to explain these characteristics of the angular
distributions.
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Table 1
A gallery of giant resonances
Resonance Discovery date  Quantum numbers T (J¥)  Frequency
Dipole 1947 1(17) 79/ A3 MeV
Quadrupole 1972 02" 65/A173
Gamow-Teller 1976 1 (1)
Monopole 1978 0 (0h) 80743
Mie 1) 4re*n/3m,

Although the giant resonances were discovered many years ago, their study
continues to be an active area of research. A reference for recent work is the
conference proceedings [1]. Earlier work is reviewed in ref. [2].

The last resonance listed in Table 1 is not in nuclear physics. It is the collective
oscillation of the electrons in a spherical metallic cluster. Its analogies with the
nuclear giant dipole resonance are so strong that I can’t resist including it in the
table.

In the giant resonances we find very clearly the interplay between single-parti-
cle motion and collective behavior. We shall see that these modes are very simple
in a certain sense — the nuclear wave function may be very complicated, but its
subtleties fortunately play a small role in the dynamics. To discuss giant reso-
nances, I shall first review the theoretical tools we can bring to bear on the prob-
lem. One important theme is that mean field theory gives a good starting point
for the discussion, although it is obviously incomplete.

For the most part, these lectures will be based on the monograph I wrote with
R. Broglia, “Oscillations in Finite Quantum Systems” [3]. Two other books I par-
ticularly recommend on the subject are Bohr and Mottelson’s “Nuclear Structure,
Vol. II"” [4], and Ring and Schuck’s “The Nuclear Many-Body Problem” [5].

2. Theoretical tools
2.1. The response function

Before going through the quantum mechanical definitions of the response func-
tion, it is instructive to remind ourselves that the concept is classical as well.
We shall often see the Lorentzian function as a profile of the response to a si-
nusoidal external field. It is useful to know where this function comes from. It
certainly cannot be derived in a natural way in treating the quantum-mechanical
nuclear Hamiltonian. It arises as purely classical response, giving the behavior
of an oscillator damped by a linear friction force. Thus, the starting point for the
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Lorentzian is the equation of motion of a particle, by the driving force Fp.

d*x dx
— +v— +kx = Fycoswt 2.1
m—s tv - thkr=F (2.1)
The response is the amplitude of motion of the system divided by the external
force Fy. I will not bother writing down the two components, proportional to
sin wt and cos wt. The Lorentzian function arises when one calculates the power
absorbed by the oscillator. This is given by
w2 2
p=20 re 2.2)
m (@ — wd)? + y2e?

where wy = /k/m is the natural frequency in the absence of damping and y =
v/m is the damping rate. A '

In quantum mechanics we can define a response in a very similar way. The
starting point is a stationary wave function for the quantum system

H o) = Eolvo) (2.3)

Corresponding to the external force in eq. (2.1), we perturb the system with
an external field. Consider a potential field with a sinusoidal time dependence
Vi cos(wt). Then the wave function in first-order perturbation theory is*

elﬂ)t e~zwt

W) = o) — ;W(Eno ot ) Wl T/20) @4)

where Eno = E, — Ey is the excitation energy of the state |1,). We next find the
expectation of an operator S in this state. This corresponds to finding the classical
amplitude of motion in eq. (2.1). Often § will be simply a function of position.
When taking a matrix element of single-particle operator in a multiparticle state,
a summation over particles is always implicit. Assuming that the expectation of
S vanishes in the ground state, the expectation value in the perturbed state is

1 1
WISI0) = > oS (g + 5 ) Wil Volto) costeon) s
n n n 2.

The coefficient of the cosine function is the quantum mechanical response. It
is most frequently used with the same fields for the external potential as for the
probe, S = V4. We will write the response in this case as

s = 3 ISt (7 + ) WalSlo) @6)

ng — @ Epto

n

* 1 will leave off factors of f in all equations.
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We will need integrals over the response, and this requires a prescription for in-
tegrating around the poles in the above formula. The proper causal behavior is
assured with the replacement w — w—i7. We can then write down the imaginary
part of the response using the identity

1 P
lim — = — +imé(w) 2.7
0w —in

The imaginary part of the response is closely related to the strength function,
defined as

Ss =Y 1ol S¥m)?8(Eno — ). (2.8)

The relation is

1
SS = ;Iml"lg(a)). (29)
2.2. Sum rules

Sum rules provide one of the most powerful tools to deal with quantum systems
that cannot be treated exactly. The best known of these is the Thomas-Reiche—
Kuhn (TRK) sum rule for the dipole strength function. For Hamiltonians with
local interactions, the integral of the strength function multiplied by energy is
given by
2 N P
D (flzli)8(w; — @) = fsz (W) wdow = L. (2.10)
7 2m
In this formula N, is the number of particles in the system. The m is the mass of
each particle. For some purposes it is convenient to combine the TRK sum rule

with the formula for the dipole absorption cross section. The resulting formula
for the energy-integrated cross section is

00 2 2 th
/ cdo = 207 2.11)
0 mc

We have here included the factors of ¢ and 7 because the formula is often applied
with physical units.

There is an additional subtlety in nuclei associated with the nucleus’s center-of-
mass coordinate. If we apply the TRK sum rule to the protons in the nucleus,
different states of the center-of-mass coordinate will be treated as part of the ex-
citations. To get around this, one uses a dipole operator that has the center of mass
explicitly subtracted out. The operator is given by

N Z
D= Y- e @.12)
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In this formula and later the symbols Z, N and A = N -+ Z refer to the numbers of
protons, neutrons and nucleons, respectively. With the operator D the factor N,
becomes ZN/A on the right-hand side of the TRK sum rule eq. (2.10). A simple
derivation of this result without using the specific form of the internal dipole op-
erator can be argued as follows. The total sum rule for the protons including the
center-of-mass excitation is Z/2my, with m y the nucleon mass. The contribution
to the sum rule from the center-of-mass motion must be given by that for a par-
ticle of mass Amy and charge Z, namely Z2/2Amy. The difference represents
the internal excitations and given by

A zZ? 1 ZN
> (f 1210 (@; — w) = > ZN

- = 2.13
my 2AmN 2mN A ( )

internal excitations f

Empirically, the giant dipole resonance shown in Fig. 1 has 120% of the sum'rule,
integrating over the peak up to an energy of 20 MeV. This shows that to an accu-
racy of 20%, the relevant degrees of freedom in nuclear physics are the neutrons
and protons with their free masses. The deviation from a precise fulfillment of
the sum rule may be due to momentum-dependent terms in the the Hamiltonian,
or to other degrees of freedom such as pions and quarks that are neglected in the
nonrelativistic nuclear many-body description. In fact these possibilities are not
exclusive — when a Hamiltonian is simplified by integrating out some degrees of
freedom, the reduced Hamiltonian in general will have energy- and momentum-
dependent terms.

Exercise 1: Derive the cluster sum rule [6]. This sum rule is based on a model of
the nucleus considered as two clusters of nucleons which are bound together. The
sum rule gives the strength associated with the relative wave function between
the two clusters. Ans.: The factor ZN/A becomes (Z1N, — ZaNi)?/AA A,
where the particle numbers in the clusters are (Z1, Ny, Ay) and (Z,, N,, A»), and
A=A+ Ap.

Exercise 2: In the nuclear dipole sum rule, how is it possible that the center-of-
mass motion doesn’t take care of itself? After all, the energy to excite the center
of mass of a free particle is zero.

Exercise 3: Many of the lectures in the school here concern quark structure in
nuclei, so one might suppose that an independent quark model could be a valid
starting point for nuclear structure. Work out the sum rule for constituent quarks,
expressed in units of my and A. The quarks have mass m, ~ my/3 and charges
+2/3 and —~1/3, and there are three times as many of them as there are nucleons.
You will see from the answer that nature hides these degrees of freedom in nuclear
physics.
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2.3. Mean field theory

Mean field theory is the big success story of theoretical physics. A huge list of
phenomena in many-particle systems can be understood starting only with the
assumption that the particles move independently in a common potential. For
fermion systems, the mean field theory is obtained by minimizing the energy of a
Hamiltonian in the space of Slater determinants. This is just Hartree—Fock theory.
The formal starting point can be expressed succinctly as the variational principle

M =0, (2.14)

lon

where ¢; is a single-particle wave function in the Slater determinant,
¥ =A[ ().
i

Here the ¢; (;) are the single-particle wave functions. The object to be minimized,
the Hartree—Fock energy, can be expressed in terms of the ¢; as

Vo |2
(IHIY) = > /d3r [Veil® 2‘;' + (2.15)

+> / / Erd’r’ gr O} v =) (Bi ()G () — ¢:(r)d;(r))

i<j
The minimization gives Hartree—Fock equations which may be written as
V2¢;

2m

+ Uagi + Uexpi = €ih;

with Ustr) = Y [ @ity Pucr =)

and D = 3 050) [ &' 8509010 v =1,
J

The ¢; are the single-particle energies, and appear in the minimization as La-
grange multipliers to insure that the norm of the single-particle wave function is
preserved. There are two potential fields in the above equation, a direct potential
U, and an exchange potential ﬁex. The direct potential is a familiar object but
the exchange potential is nonlocal and we have therefore written it as an opera-
tor. That indicates that the expression ﬁex¢i actually requires an integration rather
than being a simple multiplication.
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Exchange potentials are rather awkward to deal with in practice, and it is very
common to replace them by local potentials. In molecular and condensed mat-
ter physics, this is called the Local Density Approximation (LDA). The direct
potential is just the ordinary Coulomb field,

Us(r) = & / o MO (2.16)
=7

where n(r) is the number density of the charged particles. The exchange and
correlation parts of the electron—electron interaction is commonly parameterized

as [7]

0916 rs(r) _ 3 )" 2.17
Vi, = e — 0.0666 G<11_4)’ rf(r)~(4nn(r)> & )

W :

x 1

(;l i W and Gy = 1+ 5% (1 + %) A

%,

2 3

This parameterization was obtained by fitting the energy of an electron gas
calculated numerically. It includes effects of electron correlation as well as the
exchange, so in some sense the LDA goes beyond Hartree-Fock.

In nuclear physics, the interaction is so strong that a real Hartree—Fock treat-
ment would make no sense at all. Nevertheless, as in the same spirit of the con-
densed matter LDA, one can parameterize a Hamiltonian to be evaluated in mean
field theory. Unlike the condensed matter LDA, the parameters in the Hamilto-
nian cannot be calculated to sufficient accuracy by first principles. So one ends up
with a phenomenological theory in which the parameters of the Hamiltonian are
adjusted to fit some set of properties of the many-particle system. I will mention
three such Hamiltonians that have been widely applied, namely Skyrme, Gogny,
and the relativistic mean field.

2.3.1. Skyrme Hamiltonian

The Skyrme Hamiltonian was originally applied to nuclear mean field theory in
ref. [8]; examples of recent applications are ref. [9,10]. The interaction is based
on contact potentials. We will see later that nuclei with normal properties cannot
be derived from a Hamiltonian having only an ordinary delta-function potential, so
additional terms depending on density and the momentum operator are included.
The interaction of the Skyrme Hamiltonians may be written as

v = p(n, 1,0, Vi) 8(r —1') (2.18)

where p is a polynomial in its arguments. Of course it must satisfy the required
symmetries, in particular, angular momentum, parity, and isospin. There are many
Skyrme Hamiltonians on the market. They all give similar looking single-particle
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wave functions, but details of nuclear structure and binding energy differences far
from stability are quite variable.

2.3.2. Gogny Hamiltonian

This Hamiltonian was proposed in ref. [11]; a recent application may be found
in ref. [12]. It has contact terms similar to the Skyrme Hamiltonian, but the main
part is a finite-range two-particle interaction. The finite range interaction is taken
as a sum of two Gaussians with all possible spin and isospin exchange operators

V(@)=Y (Wi+BiP, — HiP, — M; P P)e ™" /%, (2.19)
i=1,2

2.3.3. Relativistic mean field

The last model on the list is the relativistic mean field model, a model that was
popularized by Serot and Walecka [13]. See ref. [14] for an example of a recent
application to nuclear structure. The model makes use of potentials that transform
relativistically as scalar and vector fields. The fields roughly correspond to the w
and o mesons. The Hamiltonian is the Dirac Hamiltonian for the nucleons in the
scalar-plus-vector mean field. The Lagrangian density has the form

L =9} — gop — 8§50 — my)¥ + L(w) + L(0), (2.20)

where the last two terms are free Lagrangian densities for the o and o fields. The
Dirac—Hartree equation is simply

(if — 8o — 800 — MmNV = €iYoVi. 2.21)

This is solved self-consistently together with the fields ¢ and w. I won’t write
down the equations for the fields, but they are just the classical field equations,
with the nucleon density and current as source terms.

The relativistic theory has two very nice features. First, the vector field intro-
duces a momentum dependence into the mean field. The empirical single-particle
potential is in fact momentum-dependent, and the sign of the potential, becom-
ing less attractive at high momentum, is correctly predicted*. Second, it gives
a spin-orbit field of correct sign and magnitude to explain spectroscopic spin-
orbit splittings as well as polarizations in elastic scattering. The input coupling
strengths and meson masses are adjusted to fit nuclear matter.

Counterbalancing these attractive properties are several undesirable features.
The exchange is ignored completely, which is hard to justify with interactions that
have the short ranges of the w and o mesons. The model is not truly consistent in a

* However, the strength of the momentum dependence is too large: the relativistic potential becomes
strongly repulsive at high energy, rather than falling off to a small value, as required by the empirical
potential.
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relativistic sense, because the Dirac sea is ignored in most applications. When one
includes the sea, the ugly problems of cutoffs and renormalization arise. Finally,
the predicted incompressibility is far too high with the simplest form for the w
and o terms in the Lagrangian density. That is usually patched up by adding
additional terms to L(o).

2.3.4. Which is best?

Each of these approaches has its merits — Skyrme is easily calculable, Gogny
includes finite-range forces, and the relativistic model respects the spinor char-
acter of the nucleon field. All these models are similar, however, in that they
reproduce the basic features of shell physics — magic numbers at 28, 50 and
126, and deformed ground states in the middle of shell closures. The magnitude
of quadrupole deformation can even be calculated to about 10-20% accuracy in
strongly deformed nuclei with any of these Hamiltonians. It remains a task for
the future to apply the different models in a global way to the complete set of
nuclides, and to see whether the physics omitted in the Skyrme parameterization
plays any essential role in the ground state properties.

3. Time-dependent mean field theory

Time-dependent mean field theory (TDHF) is the extension of Hartree—Fock re-
placing the single particle energy ¢; in eq. (2.16) by the time derivative operator
i9;,. The idea was introduced by Dirac in 1930 [15]. In nuclear physics, Rowe
used the TDHF as a bridge to the Random Phase Approximation, (RPA) which is
the main application. It is also of some value in the theory of heavy ion reactions,
where it was first applied as a large amplitude theory in [16]. The usual starting
point to derive TDHF is the following variational principle

5/ dt(yid, — H|y) = 0. (3.1)

Here, asin eq. (2.14), 1 is the Slater determinant of single-particle orbitals ¢;. We
shall not discuss the full TDHF, which becomes quickly numerically unwieldy,
but only consider two specializations. The first is to collective motion, which
requires that the motion in all of the single-particle orbitals be the same. The
other specialization, RPA, keeps the freedom of individual orbitals but requires
that the amplitude of the motion be small.

3.1. Collective motion

There are two kinds of collective motion in nuclei: the low frequency modes
such as rotation and beta vibrations, and the giant vibrations at high frequency. I
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will discuss mainly the latter in these lectures. The high frequency limit is often
called diabatic motion in contrast to adiabatic motion at low frequency. The theory
of diabatic collective motion is quite elegant. One only need assume that giant
resonances exist which satisfy the energy-weighted sum rule for some field S(r).
Let us consider the effect of S(r) on the ground state. Applying the field at time
t = 0, the ground state wave function ¥ is changed to

Yt =04) = eSyy. (3.2)

The perturbed v is no longer an eigenstate of the Hamiltonian. Its initial time
evolution, apart from an overall phase, is given by

Yty = (1 +1[H,S]+.. )% = 0.). (3.3)

If the Hamiltonian has only local interactions, the commutator in the above equa-
tion involves only the kinetic energy operator,

V2 V2§ VS
[H,S]=[-5=,S]=—>— - — .V
2m 2m m
The density p then evolves in time as
p = po+t8p
where
vSs
Sp=V - po— (3.4
m

is the collective transition density. Eq. 3.4 is closely related to the equation of
continuity and is easy to understand physically. The field S gives the particles an
initial velocity V.§/m. The product with py is the current. Finally, the divergence
of the current represents the rate at which the particle density changes.

A collective model can be built from the two operators, S and [H, S]. We
define time-dependent coordinates «(¢) and B(¢) with the construction

|laB) = ™S Pl Sl (3.5)

The dynamic equations will particularly involve the state with ¢ = 0, which I
write as

1B) =l = 0, ) = P15y,

This is inserted in the variational principle to get the equations of motion for & and
B. The variational principle is exactly the same as the usual one for a Lagrangian,
so the equations of motion are just the equations that follow from a Lagrangian
L = {(af|id;— H|ap). After some nontrivial algebra, the equations can be reduced
to the following [17]

f=a (3.6)
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2

adp(BIS|B) + ds(BIH|B) + %;(ﬂl[& [H, S]]|B) = 0. (3.7

Exercise 4: Derive eq. (3.6) from the Lagrangian equation,

with L = {(¢Blid; — H|ef). Hint: the Lagrangian may be simplified to the follow-
ing expression: L = —o'z(\Il5|S|\Ifﬁ)——(\IJﬁIH|\IJ5)—a2(\Ifﬁl[S, [H, STHWg)/2my.

The equations for o and § are nonlinear, but we can linearize them for small
amplitudes. The resulting motion is of course harmonic, and the formula for the
frequency comes out to be

2 _ (WolllH, [H, S, [H, S|Wo) _ M3

(Wol[S, [H, S11|Wo) My

In the last equality I have expressed the numerator and denominator as energy-
weighted moments of the transition strength [18],

M, =) (018]i)*(E; — Eo)".

The numerator and denominator in eq. (3.9), multiplied by m%,, have physical
interpretations as the spring constant and the inertia associated with the collective
coordinate §. In fact, we may express these commutator expectation values in the
following form

(3.9)

M = m3, (0[S, [H, S]110) = %wnvmzim (3.10)

K = m3, (WolllH, (H, ST, [H, S1|1Wo) = 33(BIH|B)| (3.11)
B=0

The first expectation value is the kinetic energy associated with the velocity field
S, and is thus the inertia. The second expression is the second derivative of the
expectation of the Hamiltonian, and is thus the spring constant associated with
the deformation. Eq. (3.9) for the frequency then has the familiar form

o = K

=" (3.12)

3.1.1. Application to giant dipole: Goldhaber-Teller mode
As a simple application of the diabatic theory, consider a simple uniform dipole
field in which protons and neutrons move against each other in the x direction:

S=r1x (3.13)
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The inertia is trivial to calculate; in eq. (3.10) we have |VS|?> = |z,|*> = 1 and get

MD =mNA. (314)

To calculate the spring constant we have to know how the interaction changes
when we uniformly move the protons away from the neutrons. We can make a very
crude estimate if we assume that the densities are Gaussian and the interaction is a
contact interaction. The Gaussian assumption is reasonable for light nuclei, which
is the domain of applicability of the Goldhaber—Teller model. The neutron—proton
interaction in the displaced state depends on j as

VB~ Vo / d*rd*r’ exp(—(r — p£)*/20%) exp(—(r + B£)* /2015 (r — )

= P17y, / Bre 1", (3.15)

where V; is the total neutron—proton interaction energy at § = 0. It is easy to
take the second derivative of this with respect to 8 to find the spring constant.
The result is

2V

Kp="= (3.16)
o
and the collective frequency is given by
A
2 = 3.17
“D = Aoim N (317)

To get a numerical estimate, we need to determine Vj and o, Let us consider the
nucleus 0. The rms charge radius of the nucleus is 2.7 fm, which implies that
o = 2.7/+/3 = 1.56 fm. The total interaction energy may be estimated as the
binding energy plus the kinetic energy, with the kinetic energy determined from
the Fermi gas value. The binding energy of '°0 is 127 MeV, and the Fermi gas
kinetic energy is about 22 MeV/nucleon. Thus the total interaction energy is 127+
16 x 22 = 480 MeV. Of this roughly half is associated with the neutron—proton
interaction. This gives for the frequency

. |(480)(41.5) \

This is a little bit low for the mean resonance energy. We have left out meson
exchange currents which raise the energy and increase the sum rule (after all, the
charged pions responsible for the exchange currents have a lighter mass than the
nucleons!). The model of the dipole resonance based on the field eq. (3.13) was
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proposed by Goldhaber and Teller in 1948. The A-dependence of the model is
given by

wp ~ A6, (3.19)

This can be easily seen from the behavior of K and M. From eq. (3.14) the inertia
increases linearly with A. The spring constant K is asymptotically proportional to
the the surface area of the nucleus, because with a uniform drop there is no change
in the interior density when neutrons are displaced with respect to protons. This
implies K ~ A*3, giving for the oscillation frequency eq. (3.19).

As mentioned in the introduction, the giant dipole energy falls more quickly
than A~'/® in heavy nuclei. There is another early model that displays A~!/3
behavior, the hydrodynamic model of Steinwedel and Jensen. Here nuclei are
viewed as uniform drops with sharp surfaces, and the neutron—proton counterflow
vanishes at the surface. The uniformity of the interior implies that the velocity
field is proportional to a spherical Bessel function. For a dipole oscillation along
the z-axis, the field is

S = jikr)cosé. (3.20)

The condition that the radial velocity vanishes at the surface is 35/9r|,—g = 0,
which gives the numerical condition

kR = 2.08. (3.21)

One knows in hydrodynamics that  is proportional to the wavenumber k, so-we
getw ~k~1/R~ A~1/3,
For completeness let us see how this result comes out of eq. (3.9). The inertia
for the field eq. (3.20) is given by
m==1 / Brp(r)| VS = -2 / &r p(r)SV2S = —kZT/d%p(r)S?
2 2 2 (3.22)

In the second step, we integrated by parts making use of the boundary condition.
The spring constant for the oscillation is obtained by assuming that the energy
density varies quadratically with the isospin density,

2

(BIHI8) = f &r v (5p)2.

We use eq. (3.4) for the isospin density. The expression again simplifies after
integrating by parts,

K= vr/d3r (V- poVS)? = /d3r v (0o V2S)? = k4v,/d3r 0582
(3.23)
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Taking the ratio of K to M, we see that w? ~ k2, giving the hydrodynamic relation
between w and k.

With its stiff boundary condition, the hydrodynamic model is too crude to ex-
plain the giant dipole resonance frequencies quantitatively*. Nevertheless, the
qualitative behavior with frequency inversely proportional to size, w ~ 1/R, is
dramatically displayed in the dipole response of deformed nuclei. The length R
is the distance along the direction of oscillation; in deformed nuclei there are two
inequivalent directions with different dipole resonance frequencies. This is seen
in Fig. 1, which displays the dipole strength function for a range of isotopes of
neodymium. The heavier isotopes are deformed and show a distinct split of the
dipole into two components.

3.2. RPA response

The “random phase approximation” (RPA) is the small amplitude limit of TDHF.
It may be derived by adding an external potential to the TDHF equations, and
expanding the solution as a perturbation on the stationary wave functions. We
shall use the response formulation with the density operator o(r) as the field.
This will be sufficiently general to treat all local interactions. We first evaluate
eq. (2.6) using the solutions of the static Hartree—Fock equations, with i the
ground-state Slater determinant and 7, excited Slater determinants. We need only
consider 1, having a single orbital different from the ground state, because more
complicated states will have vanishing matrix elements with the ground state. The
matrix element is simply

(Wi |0 po) = @5 ()i (r)

where the orbital i (the hole orbital) in the ground state is replaced by j (the
particle orbital) in the excited state ;. Eq. (2.6) for the response reads

e, r', ) = (3.24)

occ l 1
* . * !’ ) /
Z; ¢ () ;) @5 (') x (Q s — +w>
The density perturbation produced by an external field V is then given by

80(r) = / ST F, )V () O 32s)

* In their original paper [19], Steinwedel and Jensen made an adiabatic (rather than diabatic) estimate
of K. This introduced a compensating error so their result was in good agreement with the empirical
formula in Table 1.
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which we write in operator notation as
sp =1V

The density fluctuation makes a change in the potential field, which acts then acts
back on the density fluctuation again. To lowest order, the internal potential is
changed by an amount (8U/8p)8p, and we can write

sU
— 110
5p =TI (V +5 3,0) (3.26)
‘We may now solve for ép
sU\™!
l—IRPA —_ <1 _ H(O) _) HO (327)
8p .

This equation looks simple, but one should remember that it really is an integral
equation. However, the equation reduces to an algebraic equation when the inter-
action is separable. This simplification will be discussed in Section 3.3 below.

There is another formulation of RPA as a matrix equation in the space of parti-
cle~hole configurations. This formulation is more general than eq. (3.27) in that
it allows nonlocal interactions such as U to be included exactly. The response
formulation only deals with the local density operator 7(r), so the interactions
may only depend on n(r). For local interactions, the two formulations are en-
tirely equivalent. The noninteracting response in the particle-hole representation
is given by

0 L hi —nj .

n° = ;lmei e
Note that the two energy denominators in eq. (3.25) are both contained in this
formula due to the unrestricted sums over orbitals i and j, the combination (i)
giving one term and (ji) the other. In ref. [3] it is shown that the poles of eq.
(3.27) with this form for the unperturbed response may be found by diagonalizing
the matrix equation

(2 2)(5)-(5) 629

where the matrices A and B and the vectors X and Y are in the space of
particle-hole states |ph). The matrix elements are given by (ph|Al PRy =
(phldU Jdp|p'W) + (€ — €4)8 ppSpw. and (ph|B|p'H') = (ph|dU /dp|k'p'}.
We can go from the matrix formulation, eq. (3.28), to the response formulation
by identifying the eigenvalues with the poles of ITRPA. To make a connection
between the two formulations in the other direction, the particle-hole amplitudes
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Table 2

Comparison of the response formulation and the particle-hole configuration space
formulation of RPA.

Method Computational effort ~ Relative advantage

Response N3
Configuration ~ N©

fast; exact continuum
exact exchange and nonlocal interaction

X and Y may be calculated directly from the response if the pole energies w,, and
the transition potential 8U, are known. The relations are

Xo(phy = ——P1YI_ (3.29)

€p — € — Dy

Yo(ph) = — (hldUlp)
€p — € T+ Wy

As mentioned above, the matrix formulation in particle-hole configuration
space is more general in that it permits nonlocal interactions to be included in
the Hamiltonian. However, there are two disadvantages of the matrix formulation
that should be mentioned. One is the numerical effort. In either formulation, the
time-consuming task is inverting or diagonalizing a matrix, which increases with
dimensionality M as M>. In the case of the response function, the dimensionality
is essentially the size of a vector needed to represent a wave function — per-
haps amplitudes on a lattice in coordinate space. This increases as the size of the
system N, so the overall effort scales as N 3. In contrast, the particle-hole config-
uration space has a dimensionality that scales as N 2 for a space large enough to
respect the sum rules. Here the overall scaling is then N 6. Another advantage of
the response function method is that the continuum can be treated exactly. This
comes about because the free response is constructed from single-particle Green’s
functions, and there is a well-known analytic formula for a Green’s function in the
continuum. These relative merits and disadvantages are summarized in Table 2.

3.3. Separable interactions

The RPA becomes extremely simple when the interaction is separable. By this is
meant that the interaction can be expressed in the form

v(ry, r2) = kf (r) £ (r2)- (3.30)



144 G.E Bertsch
+
+ ﬁ/ 7)
O“" 0 1 1
=0 ] s+ o 1

Fig. 2. The RPA dispersion relation, eq. (3.32). The upper left graph shows the solution when the
interaction is attractive. The circled solution lies at a frequency below the lowest particle-hole state
(seen as divergence in the curve at @ =:1. The lower curve shows the solution for repulsive inter-
actions. In this case the collective solution, shown as the circle, lies above the highest particle-hole
state.

The simplification comes about because of a mathematical identity for inverting
dyadic matrices*. The identity reads

_ -1 _ 1§)(n]
A —=1&) D _1+—1—(77|§)' (33D

To derive the RPA for separable interactions, we write the response in a particle—
hole representation. The product % is expressed

Oy = Z i) i ef ).

This matrix has a dyadic structure, implying for the polarization
1
1=k 3 o (i —npUijIf)P/ (6 — € — @)
The resonances occur where the denominator vanishes; that condition is given by
the RPA dispersion relation

> ——“—ni —L—|(ij1f)P = 1 (3.32)

€ — €
ij I

A-myyt=1411°

It is easy to see the qualitative behavior of the collective states from the RPA
dispersion relation. The right hand side of eq. (3.32) is sketched in Fig. 2. When
k& < 0 corresponding to a repulsive interaction, the equality may be satisfied with

* . . . . . .
A dyadic matrix is one that can be expressed as the outer product of two vectors, i.e. its matrix
elements have the form A;; = u;v;.
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a pole at high frequency. The stronger the interaction, the higher the pole will
be. Conversely, if « > 0 corresponding to an attractive interaction, there will be
a pole below the lowest particle-hole energy. As the interaction is increased in
strength, the pole moves down to zero energy and disappears into the complex
plane. In that situation, the mean-field ground state is unstable.

Historical note. The RPA was originally proposed by Bohm and Pines [20] as
a theory of the plasmon in an infinite electron gas. There the excitations can be
characterized by the momentum k& that they carry. Making a Fourier transform
of the Coulomb interaction, the important component is the Fourier component
matching the momentum of the excitation,

47re?

k2

It may be seen that this is separable allowing the frequency of the mode to be cal-
culated by eq. (3.32). The other Fourier components do not contribute coherently
in the integrals. They are neglected because of their “random phases”, hence the
designation RPA.

'U(l’l _ 7’2) — eikrle—ikrz

3.3.1. An example: the giant dipole

An example of the application of separable interactions is the following treatment
of the giant dipole mode, taken from ref. [3]. The function f has to be an isovec-
tor function and dipolar. We simply take a linear function, of opposite sign for
neutrons and protons. If the oscillation is in the x direction, we will only need the
term

v(r1, r2) = kx17 (1) x27:(2).
To determine the strength «, we go to empirical data on the static nuclear potential.

The single-particle potential has a well-known isospin dependence; it may be
parameterized as

N-—-Z
Urztzvr A

with V, & 26 MeV. We assume that the potential is due to the local difference
in neutron and protons densities, so that we can write for an arbitrary isovector
density p;

8V = Vyp:/po. - (3.33)

Let us take the isovector density to have the form p, = cx7,00. We then calculate
8V using

8V = /d3r’v(r, rsp(r')
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and compare with eq. (3.33). The result is
3V,
Ay’

Once we have the interaction, it is a simple matter to write down the RPA
dispersion relation. In this case eq. (3.32) becomes

Kp =

Z 2(ep — €n)(plz;|h)? _ —_1
o (€p — €n)? — w3 Kp
For a numerical estimate, we may assume that the single-particle energies are
given by the harmonic oscillator spectrum, with
4

wy = m MeV.
Then the particle-hole excitations are degenerate with € p» — €, = wp, and the sum
over state can be evaluated with the TRK sum rule. The final result for the dipole
frequency wp is

3V, 75
2 _ 2 T
wp = wy + ey S Al MeV.

This is (somewhat fortuitously) close to the empirical frequency in heavy nuclei.

3.4. Quadrupole motion

The giant quadrupole mode has a large fraction (= 75%) of the sum rule for the
pure quadrupolar field

1
§ =z E(x2 +y%).

This field induces irrotational and incompressible flow, and is therefore appropri-
ate for incompressible drops. The velocity field associated with S is
VS§ = (_x’ =Y, 2Z)

For spherical nuclei, we may easily evaluate the inertia eq. (3.10) as
Mgy = mN/d3r|VS|2,00 = 2myA(r?). (3.34)

The restoring force coefficient also reduces to a simple expression when the
Hamiltonian only has contact interactions. Because the field does not compress
the nuclear density, the expectation of a delta function interaction is independent
of the deformation. Thus the only part of the Hamiltonian that is affected by
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the field is the kinetic energy. The operator exp(8m[H, S]) makes the following
transformation on the coordinates:

x — xe P
y— yef
7 —> ze*

The matrix elements of the gradient operator are transformed in the inverse way.
The kinetic energy of the deformed wave function becomes

2 2
(Bl 1B). = (015 10)(& + &% + )3
m 2m

Expanding this to second order in 8, we find the following expression for the
restoring force coefficient in eq. (3.11)
K 8(0| v |0) 24A (3.35)
= — ~ — A€ N .
. 2m 57
with €, the Fermi energy. We can now insert the expressions for the inertia and

the restoring force coefficient in the oscillator formula, eq. (3.12). The result is
W 12¢¢ ~ 65
Sm(r2) A3

This is close to the empirical value of the giant quadrupole frequency.

MeV. (3.36)

Exercise 5: Verify eq. (3.35).

The diabatic quadrupole formula, eq. (3.36), is very interesting in that it does
not depend on the interactions at all. The restoring force is strictly an effect of
the fermionic nature of the ground state wave function. If we considered a Bose
system, the Fermi energy € would vanish and there would be no restoring force
in the leading approximation. The quadrupolar restoring force is a resistance to
shear displacements, a characteristic of solids rather than liquids. Thus the nucleus
behaves as a solid at high frequency, with the nodes of the single-particle wave
functions providing the memory of shape.

Besides the existence of the giant quadrupole vibration, this shear modulus
may also have consequences in heavy ion reactions. In ref. [21], the reaction
208pp + 208PY was studied at a bombarding energy of 12 MeV/n, high enough
to allow the nuclei to touch and interpenetrate. When they interpenetrate, the
stiffness provides a repulsive force that should push the two nuclei apart. Thus,
the trajectory of the separation between the two centers would have a sharper
turnaround with the diabatic restoring force. This is illustrated in Fig. 3. The
electric field in the vicinity of the nuclei would have higher Fourier compo-
nents as a result, and this would lead to more energetic electric excitations. In
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Fig. 3. Graph (a) compares the trajectories of heavy ion collisions in models with (solid) and without
(dashed) the diabatic restoring force. Graph (b) compares the spectra of secondary electrons with and
without the diabatic restoring force. The measurement in ref. [21] are close to the prediction with the
diabatic force included.

fact the experimenters measured the cross section and energy distribution of sec-
ondary electrons knocked out of the atoms during the collision process. They
found that the rate was higher than the theory without the diabatic force, and it
agreed with the theory including the diabatic force. This is also sketched in the
figure.

4. Collective motion at low frequencies

The diabatic theory I have presented is only half the story of collective motion.
It describes the high-frequency side of the response, but there is considerable
collectivity also at low frequency. This may be illustrated with the quadrupole
response of the nucleus ***Pb. The transition strengths in the independent particle
model and in RPA are shown in Fig. 4. The independent particle model has many
transitions in the region of 15-20 MeV that carry most of the strength. With the
interaction turned on, the strength is shifted down to two strong peaks. The up-
per peak may be identified with the diabatic vibration. The lower peak has only
12% of the energy-weighted sum rule, but it has almost the same amplitude as the
giant resonance. This part of the strength originates in single-particle transitions
that have low transition energy. According to the RPA dispersion relation, the
lowest pole of the response is always below the lowest single-particle transition,
if the interaction is attractive. This pole is able to gather considerable collective
strength, even though the transitions that it is based on are in some sense acciden-
tal. Another way to see the collectivity of the low transitions is to measure the
radial shape of the transition density. This is shown in Fig. 5 for the quadrupole
transition in 2% Pb. The collective field eq. (3.4) produces a surface-peaked tran-
sition density, and this is very obvious in the measurement. The upper solid line
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Fig. 4. Quadrupole strength function for 208pp, from ref. [3]. The upper graph shows the free
particle-hole response, and the lower graph shows the RPA.

shows the shape for the pure collective field, eq. (3.4). The lower line shows the
RPA prediction of the transitions density. If anything, the empirical shape seems
more like the collective flow than the RPA.

4.1. Surface response in the large A limit

A qualitative theory of how the low-frequency response behaves in RPA can be
developed in a model treating the nucleus as a semi-infinite slab. I will not go
into details of this model; they may be found in ref. [22]. The basic assumption
of the model is that the residual interaction can be treated in the separable form,
with a surface form factor given by the derivative of the single-particle potential
Uy. The parameterization is

dUy dUo ) B
Kd—mggg (rin—ri2).
The modes may be characterized by their momentum parallel to the surface & .
It may then be shown that the RPA response has an expansion for small w and k|
of the form

TIRPA A 1 4.1)

iaw + bk3 + - -
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Fig. 5. Transition density for the excitation of the quadrupole state at 4.07 MeV in 208pb, from ref.
[3]. The dashed curves show the experimental data. The upper solid curve is the collective transition
density, eq. (3.4), and the lower solid curve is an RPA calculation.

The first thing to notice about this expression is that it diverges as w —> 0 when
ki = 0. This is exactly the same phenomenon as gives rise to Goldstone modes
in field theory. These arise when there is a degeneracy of the ground state. In
the slab model, the position of the surface is indeterminate. We could move the
surface and the system would have exactly the same energy. A consequence is
that there is a zero-frequency pole in the response for the mode corresponding to
a uniform translation of the surface, i.e. k, = 0.

The two coefficients in eq. (4.1) have physical interpretations. The coefficient
b is proportional to the surface tension, as calculated in mean-field theory. The
coefficient a is closely related to the damping constant for collective motion in the
“wall formula” for surface dissipation. In fact, the form of the response eq. (4.1)
is exactly that of a diffusion equation. A distortion of the surface z(r ) disappears
according to the diffusion equation

a
V3z(ri,t) = 0201, 1),
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Fig. 6. The slab response (dashed) cdmpared with the RPA octupole response for 298Pb (solid). The
208pp response has been broadened to allow visual comparison of the areas.

Of course, the shell structure in real nuclei is too pronounced for the slab
model to be realistic. Nevertheless, it does describe in some way the average
behavior of the RPA response. This is illustrated in Fig. 6, comparing the slab
model with the RPA octupole response of 2®®Pb. The connection between angu-
lar momentum L and linear momentum &k, was taken as L = k; R. The RPA
response has a very strong low mode together with a giant octupole at high exci-
tation. The slab model has a single smooth curve with the low energy enhance-
ment.

4.2. Fuairing effects

In the above paragraph we saw that individual single-particle transitions at low
frequency could induce collective behavior. Another mechanism for producing
low-frequency collectivity is through the pairing interaction. It is well-known
that pairing in a Fermi liquid produces superfluidity. This is nothing more than
saying the collective response becomes that of a perfect fluid. As a consequence,
with strong pairing the giant quadrupole would disappear at high frequency and
be replaced by a low-frequency liquid-drop mode of oscillation.
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To see how the pairing works qualitatively, let us look at the gauge description
of the pairing wave function introduced in Mottelson’s lectures. We consider two
kinds of orbitals, and label the total occupancies of the two kinds by Ny and N,.
The ground state pairing wave function is a superposition over the different values
of N,

Y= c(Ni, N)INi, M)
Now let us put in a gauge phase ¢ that depends on Ny — N3,
V(@) =Y (N1, N)e M Ny )

We will evaluate the expectation of the pairing Hamiltonian with this wave func-
tion and we will see that the energy varies with ¢ as E ~ ¢*. Thus the gauge
angle ¢ behaves as a momentum, and its coefficient will give the inertia. The pair-
ing energy of a finite system depends on the pairing gap A as E ~ AZ. Thus the
inertia associated with collective motion varies with the pairing gap as M ~ A™2.

There are a number of ways the effects of pairing on collective motion can be
derived. The most realistic calculations are done with using the generator coor-
dinate method [26]. However, this is rather intransparent despite simplifications
which can be made [25]. We can see qualitatively how the pairing works starting
from the response function. This is expanded about the adiabatic limit to give
eventually the cranking formula (eq. (4.2) below).

The general expression for the response in terms of eigenstates i, f* and their
energies E; 7 is

E, - E;
(Ef = E? + o

M(w) =2 S| f) =
f
This is expanded to fourth order in w to give

_ . 2 2 2 . 2_—2___
(o) = 201\ =, +0" LIS\ o+

n

=2M_| +20*M_3+ -

Now let us make a collective model of the response, in which there is just one
transition, to a state {c| at a frequency w.
2w,(i]S]c)?
1 = 220181,
w? — w?
We may also expand this in powers of . When the two expansions are com-
pared, we find conditions to be satisfied by (i|s|c) and «,, giving a formula for
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the collective frequency,
2 M-,
[+ M_.3 b

The response in systems with pairing is conveniently evaluated in the quasi-
particle RPA, QRPA. In this framework, the ground state is described by a wave
function with BCS pairing. The excitations are quasiparticles; we label a quasi-
particle state of orbital i by |i). Then the matrix elements of a local operator are
given by

(OISIE]) = (i1S17) (uvs + vin)

where 1 and v are the usual BCS amplitudes. We also need the BCS formula for
quasiparticle energies

e; =+ (e — )2+ A2,

Let us now examine the QRPA response function for a separable interaction of
the form « f1 f>. The RPA dispersion relation gives the condition to be satisfied

1— k% (w) =0

w

where .
T2 . 5
mer — 22 ©O1f1i ) (ei +ej)‘
a)2—(e;+e]7)2

i

We expand this equation in powers of ., and solve for the frequency. This yields
o 1= 23, 01f1ij)* (e + o)
‘ 2 Y ;011

The numerator, when multiplied by «, is the restoring force constant for the field
f. The denominator must then be the inertia. The result is very similar to the
cranking inertia, and with some manipulation can be expressed in that form.

To make the connection, we first note that the mean field Hamiltonian is
H=Hy+«f{f),soxf =dH/d{f). Second, we note that the most important
transitions in I12? will be diagonal ones with i = j. Then we may write the
inertia as

0} £ 1ii)? dH  ,uv;
Mzzxzzﬁ(%;)g—) %meng—. 4.2)

/(e + e’

[9)

This is called the cranking formula for the inertia [27]. Now if we replace the sum
by an integral over states, we can easily extract the A-dependence. The factor u;v;
is nonzero in an energy interval of the order of A. The integration thus produces
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a factor of A, reduced to A2 by the factor e 3 in the integrand. Thus we find the
adiabatic inertia from pairing scales as

1

When one puts in numbers for the quadrupolar inertia appropriate to heavy nuclei,
the adiabatic inertia comes out about ten times the diabatic (or irrotational) inertia.
The diabatic inertia increases with A as A%/3. The adiabatic inertia increases more
slowly with A. If we assume that the pairing gap is independent of A, the cranking
formula (4.2) has only a linear increase with A, due to the sum over particles. The
two inertias would become equal at some point, and this would mark the transition
to superfluid dynamics. From the numbers, this point would be for A in the ten
thousands, far beyond the stability limits for physical nuclei.

5. Nuclear equation of state

Nuclear matter is an abstraction that theorists like to think about. The starting
points are the semiempirical mass formula, whose leading term is a binding en-
ergy of about 16 MeV per nucleon, and the measured nuclear radii, whose A'/3
scaling implies a saturation of nuclear matter with an interior density of about
po = 0.16 nucleons/fm?. Since the early 1960’s theorists sought to explain these
two properties of nuclear matter taking as their starting point empirical knowledge
of the nucleon—nucleon interaction. One immediate problem with this program
is that “the” nucleon-nucleon interaction is not known. One can measure nu-
cleon—nucleon scattering phase shifts accurately (see http:/nn-online.sci.kun.nl
for recent fits), but phase shifts by themselves are not sufficient to determine an
interaction. If one assumes in addition that the potential is local, one has sufficient
constraints to construct fairly unambiguous potentials. These potentials showed
that nuclear matter was a more difficult problem than had been suspected: predic-
tions were either grossly underbound or overdense or both. The reasons for the
failure could lie in the following areas:
— neglected relativity
- missing subnucleon degrees of freedom
— three-body forces.
The last possibility is just a phenomenological way to treat missing degrees of
freedom, since all the forces very likely arise from QCD with its quarks and glu-
oms.

This history has serious implications for the theory of finite nuclei. Namely, we
cannot expect to start from a realistic Hamiltonian and reliably derive properties of
actual nuclei. We are stuck treating the Hamiltonian phenomenologically until the
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nuclear matter problem is put to rest. In some way this makes theory easier. Freed
from the edict, “Thou shalt use this Hamiltonian”, one can invoke approximations
that simplify the problem at hand. We saw examples of this in the sections on
collective motion.

Letus proceed in a similar spirit for nuclear matter. We need to start with some
many-body theory. Our organizing principle will be that nuclear matter can be de-
scribed as a moderately dilute Fermi gas, so we may expand the energy in powers
of the density*. Details can be found in books on many-body quantum mechanics,
for example, [28]. The first term in the expansion is the Fermi gas kinetic energy.
This contributes to the energy per particle an amount E; = 3kj2, /10my. It scales
with number density n as

Ey ~ n?) (5.1)

The next term is the two-body interaction energy. Its contribution to the energy
per particle may be written as

E, =un » (5.2)

where v is a constant with dimensions of energy-length®. We can now begin to
make a theory of nuclear matter using the density » as an expansion parameter.

The two terms we have discussed are insufficient to make a theory of nuclear
saturation. The second term must be attractive to bind nuclei, but it increases more
rapidly with density than the first term, so the predicted nuclear matter would
be infinitely dense. We need at least one more term in the series.: Naively, one
might expect the next term to be a three-body interaction. This would giving an
energy per particle having one higher power of n than eq. (5.2) for the two-particle
interaction. In fact the n-dependence of the next term in the expansion is different.
The reason is that the effective interaction is modified by the Pauli principle, which
in effect makes ky ~ n!/? the expansion parameter in a power series. The first
two terms vary as kfc and k3, respectively. To see dependence of the next term, let
us define an effective interaction at zero density, with a matrix element ¢ between
plane—wave states. At finite density, the interaction is weakened by Pauli blocking
of intermediate states. Perturbatively, one obtains the energy shift AE of the
interaction between two particles from the integral

1
AE =/ dCk t—t. 53
2 occupied €<k) ( )

Note that the integral over occupied states scales with k; as k>, but the energy
denominator also increases with k¢, going as kfc. Thus the correction to the pair

* Actually, the low-density expansion is only well defined if a zero-density limit exists. That may
not be the case for attractive potentials: if finite self-bound clusters exist, then the low-density limit
will be a gas of clusters, not of free particles. But I will ignore this question of principle.
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energy varies as k. The energy per particle is proportional to the density times
the correction, k}. Thus the next term in the series varies as n*/3,
With these considerations, the simplest phenomenological model we can con-
struct that has the saturation property is the three-term formula,
2

3k
Eo(n) = E?f + van + vpn*. (5.4)

It is convenient to use units in which the density # is one at nuclear matter density,
o = npg. Then nuclear matter properties are fit with parameter values

v, = —107.2 MeV,
U, = 69.6 MeV.

By construction, eq. (5.4) has a minimum at 7 = 1 and E(1) = —16 MeV. As
mentioned in a footnote, the region n < 1 is in some sense unphysical because
nuclear matter at lower density would break up into separated nuclei. However,
the region slightly below n = 1 might be reachable in the dynamics of heavy ion
collisions, and might be metastable with respect to fragmentation.

Next let us calculate the equation of state (EOS). The EOS is the pressure
expressed as a function of density and temperature. The pressure may be defined
as the adiabatic energy derivative,

IEA ,0E
_omA 228
oV on

(5.5)

s s
The derivative is easy to evaluate out at zero temperature, because the entropy

is then constant. Carrying this out for eq. (5.4), we find

2 4
P = gefpon5/3 + va,oon2 + gvbp0n7/3‘ (5.7)

This EOS is sketched in Fig. 7. We see that the pressure vanishes in equilibrium
(n = 1), as it must, and that it is negative in the unphysical region.

The derivative of the pressure gives the compressibility of nuclear matter. This
is defined as

dP

k=n T (5.8)
Conventionally in nuclear physics this is expressed as the incompressibility coef-
ficient K

K = 95 = 9d—{)—. (5.9)

n dn

The above EOS gives a compression modulus of K = 235 MeV. We will see
shortly that this is somewhat higher than what is required to fit the giant monopole
vibration.
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Fig. 7. The nuclear matter energy functién, eq. (5.7).

5.1. Finite excitation energy

Let us now consider nuclear matter at a finite temperature. We shall assume that
the thermal energy goes entirely into particle kinetic energy, not affecting the
interaction energy. This will simplify the discussion considerably. To calculate
the thermal properties, we need the relation between excitation energy per particle
€, entropy per particle s, and temperature 7. In the Fermi gas model at low
temperature, the excitation energy per particle is given by

7% T?

Ey=——, forT 5.10
7 o or T K ey ( )

On the other hand, at high temperature the system behaves as a classical gas, with
a relation

3
Eo=3T forT>>e; (5.11)
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A function that interpolates between these two limits and is accurate to a few
tenths of a percent in between is

(5.12)

0.7697
Eex/ef =-0.3 +\/009 +l2<225 — 111 )

where ¢ = T /e n?/? is a dimensionless scaled temperature.

The entropy per particle is a dimensionless quantity, and in the Fermi gas model
can only depend on the combination of variables T/e; ~ T/n*?. This makes it
quite easy to find adiabatic derivatives. The pressure at finite entropy density is
given by

p_dE| _dE|dT (5.13)
dni, dT| dn|;
_dE| 2T dE
~dn|, 3ndT|,

where E = Eg + E.. The pressure curve for a range of entropies is shown in
Fig. 8.

We see that the EOS is similar to the classical Van der Waals EOS, with coex-
isting phases when the temperature is not too high. This is the theoretical gas—lig-
uid phase transition of nuclear matter. There is a critical point at 7 =~ 18 MeV.
Campi’s lectures discuss the physics of finite nuclei in this region.

Exercise 6: Find the critical temperature numerically, using eq. (5.7) and eq.
(5.12).

5.1.1. Compressibility and the monopole resonance

The giant monopole resonance is the specific observable in nuclear spectroscopy
that relates to the compressibility of nuclear matter. If nuclei could be treated as
sharp-edged spheres, the compressibility could be determined directly from the
response to the field

S =r%/2. (5.14)
The inertia may be calculated from eq. (3.10) and is
M = Ampy{r?). (5.15)

The restoring force coefficient, using the nuclear energy function eq. (5.4), is
given by

Nuclear Collective Motion 159

Pressure (MeV-pg)

2 —

|
0 0.5 1

Density (pg)

Fig. 8. Pressure at finite excitation energy, from eqs. 5.7 and 5.13. The different plots are at constant
entropy, corresponding to the following temperatures at n = 1: 12 MeV (long dashed); 18 MeV
(solid); 20 MeV (short dashed).

K = 33 (sl HI¥p)lpmo =

00 [4/d3r 70(r) +9va/d3rn§(r) + 16vb/d3rn(7)/3(r)] . (5.16)

This is exactly A times the nuclear matter incompressibility coefficient K, if
one can make the large-A approximations n(r) = (R —r), ©(r) = 3es0(R —
r)/5 to evaluate the integrals. In this limit, the formula for the monopole fre-
quency is

K Koo

2 _
= 2 = ] (5.17)

To get a value for the incompressibility coefficient K, we recall that the empir-
ical frequency is given by

wu ~ 80/AY> MeV. (5.18)
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The eq. (5.17) has this A-dependence, and the coefficient 80 MeV is obtained if
one takes Koo = 133 MeV and (r?) = 3(1.2 fm)?A%?/5. Unfortunately, surface
effects spoil the approximation leading to eq. (5.17). The fact of the matter is that
the surface has an exaggerated importance because the v, and v are separately
large with opposite signs. For quantitative purposes, it is necessary to start from
specific mean field models, and calculate the RPA frequencies of the monopole
for the models. This has been done by Blaizot and collaborators [29,30]. They
found that there is a close connection between compressibility and the monopole
frequency, with the surface effectively lowering K in eq. (5.17). We can see
how this works by looking at the integrals in eq. (5.16) more carefully. Let us
parameterize the density with a finite surface by the Fermi function, n = 1/(1 +
exp((r — R)/a). Then the integrals in eq. (5.16) have the expansion

An R3 crd
BProk ) = 14 =2 1),
/ rat(r) 3 I+ R +)

The spring constant is then altered to

a
Ki= Ko + (920, + 1667/31)1,)*]}— (5.19)

~ 235 — 920% MeV.

In the last step we evaluated the correction numerically using eq. (5.7). Note
the very large coefficient of a/R in the above equation. Even for a nucleus as
large as 2%8Pb, the correction is large, of the order of 70 MeV. Thus the empirical
monopole frequency implies a nuclear matter incompressibility of the order K, ~
133 + 70 A 200 MeV.

Another question we need to ask is how well the radial compressional field eq.
(5.14) describes the monopole. No empirical information can be obtained about
this, because the only way the monopole has been clearly seen is with hadronic
reactions that are dominated by the surface displacement, and are insensitive to
the motion in the interior. However, we may again go to the RPA calculations
and see what they predict for the collective mode. In the hydrodynamic radial
oscillation of a uniform sphere, the surface is free and the compression is reduced
near it. This implies that the field S is not so steep at the surface as implied by
eq. (5.14). However, with usual mean field models, the incompressibility is also
reduced in the surface, allowing S to be steeper there. The two effects compensate
and the theoretical velocity field for the RPA mode [29,30] is quite close to eq.
(5.14).
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One final point that should be mentioned is that RPA calculations with rela-
tivistic mean field models do not fit in the overall systematics [36]. In my view,
this is related to the difficulty in separating the Dirac sea from the valence parti-
cles in the relativistic dynamics. The sum rules are certainly more obscure in the
relativistic models because of the negative energy states.

6. Damping of collective motion

Of the three parameters that describe vibrations — the strength, the frequency,
and the damping rate, the last is the hardest to calculate. At that stage, one must
understand all the degrees of freedom that can couple to the vibration. Not only
the coupling strength, but the density of states of these degrees of freedom is
important. A systematic procedure is to employ Fermi’s Golden Rule, which is
equivalent to evaluating the self-energy in second-order perturbation theory.

When I discussed collective motion in Section 3, there was just a single degree
of freedom B together with its associated velocity «. In TDHF one has of course
the full set of dynamic variables associated with A independent single-particle
wave functions. Thus TDHF will automatically introduce damping mechanisms,
as the coherence between the motion of different particles dissipates. This dissipa-
tion mechanism was first discussed by Landau in the context of classical plasmas,
and it is commonly called Landau damping in the context of Fermi liquids as well.
The coherence of the collective excitation also disappears when particles escape
the nucleus. TDHF with a proper description of the continuum of unbound states
includes this damping as well. Finally, there are the damping mechanisms beyond
mean field theory, such as mixing with multiple particle-hole excitations. These
are in fact the most important and the poorest understood in the nuclear giant
resonances.

6.1. Landau damping

Collective frequencies w, are determined largely by the interaction in the Hamilto-
nian. When these are degenerate with a large number of single-particle excitations
(w = €, — &), the mixing produces Landau damping. In nuclear physics, shell
effects are crucial in determining the level density of single-particle excitations,
and each multipole has to be examined individually. We shall do so in a little bit,
but first let me tell you about a system where the theory simplifies enormously.
This is the damping of the Mie resonance in atomic clusters. The Landau
damping mechanism was studied by Kawabata and Kuba. Their formula may
be derived by treating the fluctuating potential field in the Mie resonance as a
perturbation in Fermi’s Golden Rule, connecting the resonance to single-particle
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excitations [3]. Their result is remarkably simple. The width is given by

vr

'=nh % (6.1)
where vy is the Fermi velocity and R is the radius of the atomic cluster. The
physics is very simple in this formula: the particles lose coherence when they hit
the wall of their container.

If one applies this formula to nuclei or to small atomic clusters (N < 500), one
gets much too large a damping rate. As an example, take the nucleus 0. The
Fermi velocity is about vy = 0.3 ¢, and the '%0 radius is R &~ 3 fm. This gives
I' ~ 20 MeV, of which would make the giant dipole at a frequency of w, ~ 25
MeV too broad a resonance.

The way the shell effects come in may be seen from the harmonic oscillator
spectrum, which is a first approximation to single particle Hamiltonian for N <
100. Calling the oscillator frequency wy, the single-particle excitations are at
frequencies nwy, with odd » for odd parity excitations such as the giant dipole,
and even n for even parity excitations, such as the monopole and quadrupole.
Thus there are gaps of size 2wy in the single-particle excitations for any given
multipole. If the collective frequency is in the gap region, it will not mix strongly,
and can be seen in the TDHF as a single resonance.

This turns out to be the qualitative behavior of TDHF for dipole excitations
in light nuclei: the resonant frequency is at ~ 2wy which is a gap region for
odd particles. In heavy nuclei, the spin-orbit splittings of the single particle states
spoils the simplicity of the harmonic oscillator picture, and there is predicted to be
considerable Landau damping. This is illustrated in Fig. 9 which shows the RPA
spectrum of the giant dipole in 2®Pb. The individual peaks may be associated
with single-particle excitations at nearby frequencies. The experimental strength
function is quite different: it is single broad and smooth peak, well fit by the
Lorentzian function. Obviously, there is important physics beyond RPA when
damping is to be calculated.

The RPA is more successful in the nucleus °0. The photon cross section for
this nucleus is shown in Fig. 10. The main strength is split into two peaks. RPA
reproduces this, as a mixing between collective resonance and the single-particle
excitation ( p3_/12 d32), which has a high frequency because of the spin-orbit field.

6.2. Direct escape

There is a second source of damping in TDHEF, associated with the particles in
the continuum leaving the nucleus. The particle escape in TDHF should be dis-
tinguished from the evaporation of particles that may occur after the vibrational
motion has been dissipated into other degrees of freedom.
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Fig. 9. The giant dipole resonance in 208pp according to RPA, from ref. [3].
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Fig. 10. The giant dipole resonance in 160, from ref. [3]. The experimental photoabsorption cross
section is shown as the dashed line, and an RPA calculation is shown as the solid line.

Before displaying the RPA results, it is helpful to estimate the width from
more elementary arguments. Let us start with the idealization of free particles in
a spherical volume. The rate at which particles cross the surface of the volume
will be the damping rate associated with escape. The classical calculation is given
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by the integral below

4r d 1
W= nthz/ ——?/ dcosfv cosf 6.2)
o 41 Jo

3v
=1x

In the above equation, n = 3 /4w R3 is the number density, R is the radius of the
sphere, and v is the velocity of the particle. The angular integral is over the direc-
tion of the particle with respect to the normal of the surface. The above estimate
is far too naive because it ignores the potential well that holds the particles in and
slows them down as they leave. We can improve on eq. (6.2) by explicitly putting
in the potential barrier physics. We consider a barrier of height Uy, and take a
particle that has enough energy to escape, with £ = Uy + €. We will assume that
the particle escapes from the potential if the kinetic energy associated with the
radial motion exceeds the barrier. Labeling the direction of motion of the particle
with respect to the wall by the angle 8, we need the following integral to get the
flux of particles over the barrier,

! 12(Ug + €) 1 2
dcosf,/ ———c¢cosf = - | ————
_[;0 m 2V m(Uy +¢€)

where 6y = cos™! «/Uy/ Uy + € is the angle at which the radial momentum is just
large enough to surmount the barrier. The formula for the width is then

3e 2
P= &\ mGoro ¢

Let us see how this works in practice, taking as a first example the nucleus '°O.
The GDR is centered at about 25 MeV. Since the Fermi level at —16 MeV and
the well depth is about Uy = 50 MeV, escaped particle has a kinetic energy € ~ 9
MeV. Using R = 3 fm for the radius of 160, the formula gives a width of 3 MeV.
Looking back at Fig. 9, we see that this is the approximate width of the main peak.
Thus the escape width is quite important for the giant resonance in '90.

Next let us examine a heavy nucleus, 2®Pb. The corresponding numbers to
put in eq. (6.3) are € ~ 4 MeV, Uy ~ 44 MeV, and R ~ 7 fm. This applies
to the neutron decay channels. The proton channels are effectively closed due
to the large Coulomb barrier, reducing the width by an additional factor of Z/A.
The formula then gives a width of ~ 0.2 MeV. Looking back at Fig. 8, we see
that the individual peaks are quite narrow. Their total width is not far from the
value given by the the formula. However, as mentioned before, the experimental
strength function looks nothing like the RPA theory: it 1s a single smooth peak
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Just like the lower curve in Fig. 1. We conclude that the escape width in heavy
nuclei is small compared to the damping due to mechanisms beyond RPA. Those
form the topic of the section below.

6.3. Beyond mean field

As we saw earlier, it is necessary to go beyond mean field theory to treat the
damping in heavy nuclei. Many-body theory provides a systematic procedure for
mixing other degrees of freedom, treating them as multiparticle—multihole states.
The collective excitation is a superposition of one-particle-one-hole states, and
it mixes with two-particle-two-hole states by the residual interaction. As a first
approximation which is very useful for an orientation, let us consider the coupling
to the particle and the hole of the collective excitation to be incoherent. We then
have the width expressed in terms of a particle and hole decay widths as

Upn(epn) = Tp(ep) + Urlen). (6.4)

We have explicitly indicated that the width depends on excitation energy. Let us
for the moment assume that this formula is valid, and ask about the origin and
magnitude of the single-particle damping widths, I",(€) and I'; (¢). According to
the Golden Rule formula,

') = (plv|p' p” )2 / dnpydnyr dng.8(e — (&p + 8pr — €47)). (6.5)

The second factor is the density of 2p—1h states. It is responsible for the depen-
dence of the width on energy E, for energies in the vicinity of the Fermi surface.

The two-particle—one-hole density of states is proportional to (¢ — € s)?, which
may be seen quite easily as follows. We start with the single-particle density of
states . and build up the multiparticle density of states by convolution. We may
take n. as constant near the Fermi surface; in the Fermi gas model it is given by

dk 3A (e
= V —8 ad = —— —_—
Ne 8 (€ — &) ST (ef) (6.6)
34 fo 6.7
R — TeR€r., .
2 Er €5 (6.7)

The one-particle—one-hole density of states is just the convolution of one particle
densities,

/dnpdnh 8(e — (e, — €1)) =n§/ de, /ef de, 8(e — (€ + 1))
€r

= €. (6.8)
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Fig. 11. Widths of single-particle states, from the table in ref. [37], as a function of energy.

Note that this depends linearly on the energy €. A second convolution gives the
2p~1h density of states,

/dnp dnp dny 8(e — (ep +&p — &pr)) 6.9)
2
_npleme) (6.10)
¢ 2
Thus the Fermi gas model predicts that the single-widths have the leading behavior
T, = alepn —€5)° 6.11)

in the vicinity of the Fermi surface. There have been attempts in the literature to
parameterize the single-particle widths using functions with this leading behavior.
See ref. [37] for some examples. Experimentally, the single-particle width can be
studied with particle-transfer reactions. A graph of the data is shown in Fig. 11.
A glance at it should convince the reader that there is not sufficient regularity to
make a simple parameterization such as eq. (6.11) reliable. However, there are
many cases where the width is about 3—4 MeV when the excitation away from
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the Fermi surface is ~8 MeV. These numbers correspond to a ~1/20 MeV in eq.
(6.11), and that is a value that has often been used.

Part of the difficulty with the parameterization eq. (6.11) is that the Fermi
gas model ignores the collective physics associated with the surface. We saw
earlier that there is strong surface collectivity that couples to the single-particle
motion. We can make a very qualitative argument about how the surface collec-
tivity behaves using the slab model. The final state density can be expressed as a
single-particle level density multiplied by the imaginary part of the particle-hole
response. Taking the response from eq. (4.1), the integral is

€ A
1
r(e)~1m/ da)/ k] ————,
0 0 iw+ bk /a

where A is a cutoff having the order of magnitude of the Fermi momentum.

The integral over k2 is obviously a logarithm, In(A2+iwb/a)—In(iaw/b). The
imaginary part of log(iaw/b) is a constant, i7 /2, so the integral over w just gives
a linear dependence on €. Of course, the slab model is grossly oversimplified, and
the final message might be that the width on average should depend on excitation
energy as a power E* with | < o < 2.

Let us now return to the giant resonances, and consider as an example a col-
lective excitation at an energy of 16 MeV. Splitting the energy equally between
particle and hole, the damping width would be

T,4(16 MeV) ~ 2T ,(8 MeV) ~ 6 — 8 MeV. (6.12)

The collective resonances are in fact narrower than this. The reason is that there
is a coherence between particle and hole, which interferes destructively in the
matrix element to create a secondary particle-hole pair [37]. We could calculate
this again by using Fermi’s Golden rule. The matrix element would be the sum
of the particle and hole contributions,

(phvip p"h" K'Yy = (pIvIp' p" h")8pw + (h[v|p" B B')S oy (6.13)

When the matrix element is squared, the cross term gives a destructive interfer-
ence. The physics here is exactly the same as you have heard in a different context:
the color transparency discussed by Pire in his lectures. Here the collective state
is a quark—antiquark pair that propagates through hadronic matter. The matrix el-
ement to excite the matter by the gluon field is reduced because of the interference
between quark and antiquark.

7. Large amplitude motion

Under this heading, I want to talk about two unrelated topics. The first is collective
motion beyond the harmonic approximation. This is studied experimentally by
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creating multiple phonons and measuring their interactions and energy shifts. The
other topic in large amplitude motion relates to P. Paul’s lectures on fission. The
shape change of a nucleus undergoing fission is the largest amplitude motion we
can possible study. It is not collective, however, and so quite different theoretical
considerations are required.

7.1. Multiple phonons

Since the early days of nuclear physics, collective motion has been treated mod-
eling the Hamiltonian with a harmonic oscillator acting on some intrinsic coordi-
nate. So it is not surprising that extensive searches have been made for the higher
excitations of the harmonic oscillator. A famous but deceptive example is the low
excitation spectrum of the nucleus '*Cd. The nucleus possesses a 2% first excited
state at 0.62 MeV excitation energy, and then a triplet of levels at nearly double
the energy having quantum numbers 0%, 2% and 4*. It was natural to think that
these states were just double excitations of a nearly harmonic vibration. However,
later work showed contradictions in this simple picture. For example, the lowest
27 has a substantial quadrupole moment, which is not allowed for a harmonic
vibration. The B(E2) transition strengths from the upper levels also do not have
the proper relation to the lowest B(E2) to identify them as states of a common
harmonic oscillator®. In recent years, experiments have concentrated on the 3~
vibration in 2°8Pb as a good candidate for a harmonic vibrator. Very recently, ev-
idence for the double 3~ with total angular momentum 0, (3~ x 37)%, was found
[32]. In this work, the excitation energy was found to differ from the harmonic
value of 2 E3- by only 0.2%. It is a theoretical challenge that we will not address
to try to understand these low collective states.

Recently it has become possible to observe a double excitation of the giant
dipole resonance [33-35]. The diabatic collective excitations are much easier
to deal with theoretically, because the excitation operator is simple. As we saw
in Section 3.1, the collective motion can then be described by the coordinate 3,
which satisfies equations of motion that can be expressed in terms of integrals over
the wave function. It appears that the nonlinearity can then be attributed largely to
the behavior of the integral (8| H | 8), which we treated earlier in a purely harmonic
approximation. I do not wish to go into lengthy calculations of the nonlinearity,
but would rather just examine orders of magnitude in the nonlinear behavior'.

For all the modes we have considered, the nonlinearity appears as a small pa-
rameter, namely the amplitude of the displacement divided by the nuclear radius.

: See, however, ref. [31] for a more extensive spectrum of 1'2Cd showing a very regular behavior of
the yrast spectrum, 07, 2%, ..., 127,

i Ref. [17] has a detailed discussion of the nonlinear theory.

i
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Before demonstrating that this is the relevant parameter for anharmonicity, let us
just confirm that it is indeed a small quantity. For the giant quadrupole resonance,
we could argue as follows. In terms of the coordinate 8, the amplitude of the
harmonic motion at an energy £ = w/2 = %, /Ko/Mg is given by

1

Bo = _(MQKQ)1/4

(7.1)
where the inertia My and the spring constant Ky were defined in Section 3.4.
From eq. (3.34) and eq. (3.35) we find

5 1/4
Po = <48eme(r2)A2> : (7.2)

This is easily seen to vary with A as A=2/3, which goes to zero in the large-A
limit. For example, putting in numbers for the physical quantities the amplitude
has a value By ~ 0.015 for 2°®Pb, which is indeed much less than 1.

Let us now see how the anharmonicity affects the frequency. There are several
ways to calculate this. Perhaps the easiest is to just consider the anharmonic terms
in the Hamiltonian as a perturbation on the harmonic oscillator states. Thus, if
we write the energy function as

1 1,
(BIH|B) = Eo + 5 Kop® + ;KB + ... (7.3)
we may estimate the energy shift as
1 / 4
AE, = ZKQ (n|B*|n). (7.4)

To derive the A-dependence of this expression, note first that the expectation of
the Hamiltonian scales as A. Since the coordinate 8 is dimensionless, this implies
that the integrals defining the coefficients K and K7, also scale as A. Putting this
and the B ~ A~%/ scaling into the above equation we find AE, ~ A~5/3, This
is a factor A=*/3 faster than the basic quadrupole frequency, @ ~ A~!/3. This
simple argument is confirmed by more detailed calculation [17].

It is interesting to put this in the context of a general many-particle system with
collective excitations, for example phonons or plasmons. A phenomenological
Hamiltonian would allow these modes to be coupled with a contact interaction.
This would imply frequency shifts that for double excitations that would vary
inversely with the volume. Thus it is quite natural to expect an A~ behavior of
the anharmonicity in a system of A particles.

Turning back to the nuclear excitations, let us now consider the dipole mode
which is of especial interest in view of the experiments {33-35]. To analyze that
case, I will treat the mode in the Steinwedel-Jensen model. The displacement
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field eq. (3.20) produces a density change (with neutrons opposite to protons) in
the interior but not in the surface. The collective coordinate 8 has in this case
dimensions of length squared; the associated displacement field is proportional to
k?> ~ 1/R2. Let us now see how the amplitude of the vibration depends on size
using the formula By = (MpKp)~'/*. The mass and restoring force constants in
eq. (3.22) and eq. (3.23) scale with A as

Mp ~ A3
Kp~ A3,

implying that S8y is independent of A. For a given Sy, the energy function varies
with A as A times the appropriate power of k, giving an A%/ dependence for the
quartic term. Thus the small anharmonicity for large nuclei is also a characteristic
of the dipole mode. The result is also similar assuming that the mode is of the
Goldhaber—Teller type. In detailed numerical models, the second dipole is within
a small fraction of an MeV of being at twice the single resonance frequency.
On the experimental side, the double excitation was found to be at the expected
energy.

However, some experimenters reported a strength for the second excitation sig-
nificantly larger than expected from harmonic theory. The collective state satisfies
a sum rule, and there is no way to alter its strength with shifting its frequency
correspondingly. A likely explanation of the experimental results is that other
multipolarities in the same region of the spectrum contributed to the observed
bump.

T want to discuss briefly the width of the second phonon. In classical terms, the
double excitation should have half the lifetime and therefore twice the width. This
classical behavior can be derived from Fermi’s Golden Rule under the assumption
that the particles and holes of the two phonons do not interfere with each other in
the matrix element mixing the 2p—2h double phonon with 3p-3h states. One may
well ask, in the light of the coherence found for the decay of a single collective
phonon, is the assumption justified? I will not go any further into this question,
but just mention a recent calculation that finds some reduction in the width from
twice the width of a single phonon [23].

7.2. Hot fission

With the ideas developed in the preceding lectures, we can take a look at fission
of hot nuclei, the topic of Peter Paul’s lectures. At very high energy, the nucleus
will behave as a viscous liquid, and the rate at which it can change shape will
depend on the coupling strengths between different degrees of freedom. This
contrasts sharply with the behavior at low excitation. There the statistical theory
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Fig. 12. Spectrum of self-consistent mean-field configurations.

of transition rates may be applied. The statistical decay rate depends only on the
number of channels and the level densities; the dynamics becomes irrelevant.

To make a theory of the shape dynamics at high excitation energy we will go
back to mean field theory, and assume that the mean field configurations are still
a useful starting point for the further development. The distribution of mean field
levels as a function of deformation is sketched in Fig. 12. Each mean field state is
a self-consistent solution of the mean field equations, and may be characterized
by its deformation and energy. These are the dots in the figure. At low excitation
energy, the pairing mixes the mean-field configurations and this representation is
less appropriate than the BCS description. The lower boundary of states in this
plane describes the energy of a cold nucleus as a function of deformation. Let
us consider the nucleus starting in some mean field state and ask how it evolves.
The interactions mix nearby states, leading to a change in deformation. We can
estimate the interaction rate using Fermi’s golden rule,

r= 2n(i1v|f>2fl—’3. (7.5)
de

We will not try to evaluate eq. (7.5) from first principles, but just relate it to the
empirical damping that we have already dealt with. A key part of this calculation
will be to determine the density of states. We are dealing with a typical state at
high excitation, so we will treat the single-particle occupation in an average way.
The final state must have the same occupation factors as the initial state, except
for the two particles that interact. These may jump from occupied orbitals to
unoccupied orbitals. For a given orbital, the statistical factors that weight this are
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the Fermi—Dirac factors f and 1 — f. We may then express the average density
of final states as the integral

dn

o= / Mide: fif>(1 — F)(1 — f)d(er + e — & — €g).

This integral depends on temperature as T°. To see this, change the energy vari-
able to the dimensionless variable x = €/T in the integral,

Z—: =niT> / idx; f1 f2(1 — )1 — fa)8(x1 + x2 — x3 — x4).

Since the integrand depends only on the x the prefactor gives the entire
T-dependence. The T3 behavior can be understood qualitatively as follows. Each
quasiparticle in the excited states has a width proportional to 72, according to con-
siderations we made earlier. The number of quasiparticles increases with temper-
ature as T, and the total width increases as the number of quasiparticles times
their width. At a temperature of 2.5 MeV, the single-particle width is of the order
of 3 MeV, and the number of quasiparticles in a heavy nucleus is about 20. Thus
the width of a single configuration at that temperature is about 60 MeV.

The width gives the rate at which the system moves from one configuration to
another, but does not tell us directly how the deformation changes. However, it is
possible to crudely estimate the number of configuration changes required to go
from a spherical shape fission. The number of orbital changes required to go from
a spherical mean-field state to a strongly deformed fission saddle configuration is
of the order of the number of particles, A. I don’t have time to derive this, but
refer you to ref. [24]. Each two-particle interaction makes 4 orbital changes, so
the number of interaction steps is better approximated by A /4 ~ 50. However, the
motion of the nucleus from the spherical shape to the fission shape is a random
walk over the energetically allowed configurations. Under these conditions the
average distance the nucleus moves is the square of the number of steps times
the step size. Combining this with the transition rate estimated in the previous
paragraph, the time to go to fission comes out as

hoAN?
t==(=) ~10*fm/c=3x10"%s
r\4

This is a very long time on the scale of neutron evaporation times, and is qualita-
tively in accord with the fission delay times found experimentally. However, this
description gives too slow a rate at low temperature, because of the 7> behavior
of I'. The treatment ignores pairing, which we saw gives collective motion at low
frequency. It is an unsolved research problem to include pairing in the theory of
fission at finite excitation energy.
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