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A. Introduction

The Jarzynski equality [1] has become an important
tool for measuring the free energies of nana-scale sys-
tems. For understanding the derivation of the equality,
it may be helpful to have a transparent example that il-
lustrates how it works. To that end, this note carries out
the derivation for a simple Hamiltonian. The Hamilto-
nian describes a particle at position x and momentum p
in a harmonic oscillator well, coupled by another spring
stretched to a movable point y :

H(x, p, y) =
p2

2m
+

1

2
k1x

2 +
1

2
k2(x− y)2. (1)

The free energy F (y, β) of the system is given by

e−βF =

∫
dx dp ρc(x, p, y, β) (2)

where

ρc = e−βH(x,p,y) (3)

is the canonical statistical phase-space density at tem-
perature T = 1/β. I will use the symbol ρc for canonical
densities and a plain ρ for densities defined differently.

The integrals are trivial to evaluate the free energy for
Eq. (1). The result is
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B. Stretching the spring

Now let us change the state of the system by increasing
y. I assume that y depends linearly on time,

y(t) = at (5)

The resulting time-dependent Hamiltonian equation of
motion can be solved exactly. The phase-space coordi-
nates evolve in time according to

x(t) = xm sin(ωt+ φ) +
k2

k1 + k2
at (6)

and

p(t) = mω xmcos(ωt+ φ) +
k2

k1 + k2
a (7)

where ω =
√

(k1 + k2)/m. The amplitude xm and
the phase φ are determined by the initial conditions
x(0), p(0),

x(0) = xm sin(φ) (8)

p(0) = xmmω cos(φ) − k2

k1 + k2
a (9)

I now assume that the second spring is stretched to a
length y0 in a time τ = y0/a. At the end of the stretch
the coordinates are

x(τ) = xm sin(ωτ + φ) − k2

k1 + k2
y0 (10)

p(τ) = xmmω cos(ωτ + φ) − k2
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y0

τ
. (11)

Now we ask, what happens to the phase-space density
under this transformation? The answer is very simple:
by Liouville’s theorem the density remains constant, ie.

ρ(x, p, y0) = ρc(x
′, p′, 0, β) = e−βH(x′,p′,0) (12)

where x, p = x(τ), p(τ) and x′, p′ = x(0), p(0) in Eqs.
(6,7). This differs from the canonical density at t = τ ,
given by exp(−H(x, p, y0)β)). We can construct the
canonical density at t = τ by correcting the exponent:

ρc(x, p, y0, β) = e−β∆Eρc(x
′, p′, 0, β) (13)

where ∆E is the difference in energies of the system ini-
tially at x′, p′ and finally at x, p,

∆E = H(x, p, y0) −H(x′, p′, 0). (14)

Now a crucial observation: the energy difference can be
computed as the work W done by stretching the second
spring from y = 0 to y0. The work is calculated by
integrating the force in the second spring with respect to
y. This is carried out as follows.

W =

∫ τ

0

dt k2 (y(t) − x(t))
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(15)

= k2a
xm
ω

(cos(ωτ + φ) − cos(φ)) +
a2k1k2

2(k1 + k2)
τ2

The result can be shown by straightforward algebra to be
equal to the energy difference calculated from Eq. (14).
It could hardly come out otherwise. Anyway, The result
is Jarzynski’s relation,

e−βF (y0,β) =

∫
dxdp e−βW ρc(x, p, 0, β). (16)
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To apply the equation, one samples the canonical ensem-
ble at y = 0, weighing each sample by the work done to

stretch the second spring.
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